Summary
The objective of my proposal is to test the law of gravity using the large-scale structure of our Universe. The way galaxies are distributed in the sky, as well as their observed size and shape, are directly sensitive to the theory of gravity. Upcoming large-scale structure surveys are expected to deliver very precise pictures of our sky over a wide range of scale and redshift, opening the way to a whole new range of tests of gravity. The aim of my project is to construct novel cosmological observables to test fundamental properties of gravity that are not accessible through standard large-scale structure analyses. With these observables, I will probe two distinct but complementary regimes of the large-scale structure.
First, I will construct new tests of gravity at large scales. In this regime, observables are affected by relativistic distortions that deform our image of the sky. The goal of my research is to construct novel, innovative methods to isolate these distortions and use them to probe some features of gravity that are not encoded in standard tests.
Second, I will probe gravity at small scales, in the non-linear regime of large-scale structure. The non-linear regime contains complementary information about the nature of gravitational interactions. I will use a novel observable, the line correlation function, to probe these interactions. This observable is sensitive to correlations in the phases of the galaxy density field and grant us access to information that is not included in standard statistical measures like the two-point correlation function.
The new cosmological observables constructed in this project will allow us to go beyond standard large-scale structure analyses, and to test in a model-independent way specific properties of gravity that have never been tested before at cosmological scales.
First, I will construct new tests of gravity at large scales. In this regime, observables are affected by relativistic distortions that deform our image of the sky. The goal of my research is to construct novel, innovative methods to isolate these distortions and use them to probe some features of gravity that are not encoded in standard tests.
Second, I will probe gravity at small scales, in the non-linear regime of large-scale structure. The non-linear regime contains complementary information about the nature of gravitational interactions. I will use a novel observable, the line correlation function, to probe these interactions. This observable is sensitive to correlations in the phases of the galaxy density field and grant us access to information that is not included in standard statistical measures like the two-point correlation function.
The new cosmological observables constructed in this project will allow us to go beyond standard large-scale structure analyses, and to test in a model-independent way specific properties of gravity that have never been tested before at cosmological scales.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/863929 |
Start date: | 01-11-2020 |
End date: | 31-10-2025 |
Total budget - Public funding: | 1 946 064,00 Euro - 1 946 064,00 Euro |
Cordis data
Original description
The objective of my proposal is to test the law of gravity using the large-scale structure of our Universe. The way galaxies are distributed in the sky, as well as their observed size and shape, are directly sensitive to the theory of gravity. Upcoming large-scale structure surveys are expected to deliver very precise pictures of our sky over a wide range of scale and redshift, opening the way to a whole new range of tests of gravity. The aim of my project is to construct novel cosmological observables to test fundamental properties of gravity that are not accessible through standard large-scale structure analyses. With these observables, I will probe two distinct but complementary regimes of the large-scale structure.First, I will construct new tests of gravity at large scales. In this regime, observables are affected by relativistic distortions that deform our image of the sky. The goal of my research is to construct novel, innovative methods to isolate these distortions and use them to probe some features of gravity that are not encoded in standard tests.
Second, I will probe gravity at small scales, in the non-linear regime of large-scale structure. The non-linear regime contains complementary information about the nature of gravitational interactions. I will use a novel observable, the line correlation function, to probe these interactions. This observable is sensitive to correlations in the phases of the galaxy density field and grant us access to information that is not included in standard statistical measures like the two-point correlation function.
The new cosmological observables constructed in this project will allow us to go beyond standard large-scale structure analyses, and to test in a model-independent way specific properties of gravity that have never been tested before at cosmological scales.
Status
SIGNEDCall topic
ERC-2019-COGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)