REM | Resonant Electromagnetic Microscopy: Imaging Cells Electronically

Summary
Microfluidics technology has been quite successful in fabricating small, low-cost devices with excellent analyte handling capabilities. However, the main detection paradigm in microfluidics has still been optical microscopy — which is a bulky and expensive technique. A chip-scale detection scheme that can provide multidimensional information is much needed for the widespread adoption of lab-on-a-chip technology. So far, successful capacitive and resonant electrical sensors have been deployed in the field; yet the focus of these sensors has been to obtain the electrical volume or location of a particle — which constitutes only a limited piece of information about the analytes. Here we propose to redesign and utilize resonant electrical sensors in a radically different way to obtain images of cells in a microfluidic channel. The technique proposed can also multiplex on-chip cytometry greatly, accomplish low-cost and high-throughput single-cell transit-time characterization, obtain not only the electrical but also the geometrical size of analytes, determine the dielectric permittivity of analytes, in addition to capturing 1D profile or 2D images of cells. At the basic science level, the project will enhance our understanding of the interaction of electromagnetic fields and living matter at the single cell level and may provide new insights on cell motility, growth and mechanics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/758769
Start date: 01-02-2018
End date: 31-01-2024
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Microfluidics technology has been quite successful in fabricating small, low-cost devices with excellent analyte handling capabilities. However, the main detection paradigm in microfluidics has still been optical microscopy — which is a bulky and expensive technique. A chip-scale detection scheme that can provide multidimensional information is much needed for the widespread adoption of lab-on-a-chip technology. So far, successful capacitive and resonant electrical sensors have been deployed in the field; yet the focus of these sensors has been to obtain the electrical volume or location of a particle — which constitutes only a limited piece of information about the analytes. Here we propose to redesign and utilize resonant electrical sensors in a radically different way to obtain images of cells in a microfluidic channel. The technique proposed can also multiplex on-chip cytometry greatly, accomplish low-cost and high-throughput single-cell transit-time characterization, obtain not only the electrical but also the geometrical size of analytes, determine the dielectric permittivity of analytes, in addition to capturing 1D profile or 2D images of cells. At the basic science level, the project will enhance our understanding of the interaction of electromagnetic fields and living matter at the single cell level and may provide new insights on cell motility, growth and mechanics.

Status

CLOSED

Call topic

ERC-2017-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2017
ERC-2017-STG