Summary
The molecular communication between mitochondria and nucleus is an integrated bi-directional crosstalk - anterograde (nucleus to mitochondria) and retrograde (mitochondria to nucleus) signalling pathways. The mitochondrial retrograde response (MRR) is driven by defective mitochondrial function, which increases cytosolic reactive oxygen species (ROS) and Ca2+. Metabolic reprogramming is a key feature in highly proliferative cells to meet the energy needs for rapid growth by generating substrates for cellular biogenesis. In these mitochondria retro-communicate with the nucleus to induce wide-ranging cytoprotective effects exploited to develop resistance against treatment and sustain uncontrolled growth. Recently, the mitochondrial management of cholesterol-derived intermediates for the synthesis of steroids has been demonstrated as a determinant in the oncogenic reprogramming of cellular environment.
We hypothesise that cholesterol-enriched domains facilitate the communication between remodelled mitochondria and nucleus to expedite MRR. This mechanism may be exploited during abnormal cell growth in which cholesterol metabolism and associated molecules are increased.
This application capitalizes on expertise in cell signalling and metabolism to interrogate core pathways and unveil molecular sensors and effectors that define form and function of the MRR by:
I. Elucidating the mechanism of metabolic regulation of MRR, describing the role exerted by cholesterol trafficking;
II. Unveiling microdomains for mito-nuclear communication established by remodelled, autophagy escaped, mitochondria;
III. Validating protocols to modulate and target MRR for diagnostic and therapeutic benefit;
The experimental plan will (i) define a molecular signalling axis that currently stands uncharacterized, (ii) provide mechanistic knowledge for preventive, and (iii) therapeutic applications to counteract deficiencies associated with stressed, dysregulated mitochondria.
We hypothesise that cholesterol-enriched domains facilitate the communication between remodelled mitochondria and nucleus to expedite MRR. This mechanism may be exploited during abnormal cell growth in which cholesterol metabolism and associated molecules are increased.
This application capitalizes on expertise in cell signalling and metabolism to interrogate core pathways and unveil molecular sensors and effectors that define form and function of the MRR by:
I. Elucidating the mechanism of metabolic regulation of MRR, describing the role exerted by cholesterol trafficking;
II. Unveiling microdomains for mito-nuclear communication established by remodelled, autophagy escaped, mitochondria;
III. Validating protocols to modulate and target MRR for diagnostic and therapeutic benefit;
The experimental plan will (i) define a molecular signalling axis that currently stands uncharacterized, (ii) provide mechanistic knowledge for preventive, and (iii) therapeutic applications to counteract deficiencies associated with stressed, dysregulated mitochondria.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/819600 |
Start date: | 01-04-2019 |
End date: | 31-03-2026 |
Total budget - Public funding: | 1 450 060,00 Euro - 1 450 060,00 Euro |
Cordis data
Original description
The molecular communication between mitochondria and nucleus is an integrated bi-directional crosstalk - anterograde (nucleus to mitochondria) and retrograde (mitochondria to nucleus) signalling pathways. The mitochondrial retrograde response (MRR) is driven by defective mitochondrial function, which increases cytosolic reactive oxygen species (ROS) and Ca2+. Metabolic reprogramming is a key feature in highly proliferative cells to meet the energy needs for rapid growth by generating substrates for cellular biogenesis. In these mitochondria retro-communicate with the nucleus to induce wide-ranging cytoprotective effects exploited to develop resistance against treatment and sustain uncontrolled growth. Recently, the mitochondrial management of cholesterol-derived intermediates for the synthesis of steroids has been demonstrated as a determinant in the oncogenic reprogramming of cellular environment.We hypothesise that cholesterol-enriched domains facilitate the communication between remodelled mitochondria and nucleus to expedite MRR. This mechanism may be exploited during abnormal cell growth in which cholesterol metabolism and associated molecules are increased.
This application capitalizes on expertise in cell signalling and metabolism to interrogate core pathways and unveil molecular sensors and effectors that define form and function of the MRR by:
I. Elucidating the mechanism of metabolic regulation of MRR, describing the role exerted by cholesterol trafficking;
II. Unveiling microdomains for mito-nuclear communication established by remodelled, autophagy escaped, mitochondria;
III. Validating protocols to modulate and target MRR for diagnostic and therapeutic benefit;
The experimental plan will (i) define a molecular signalling axis that currently stands uncharacterized, (ii) provide mechanistic knowledge for preventive, and (iii) therapeutic applications to counteract deficiencies associated with stressed, dysregulated mitochondria.
Status
SIGNEDCall topic
ERC-2018-COGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)