Summary
Wave-modulated Arctic Air-sea eXchanges and Turbulence (WAAXT) is a project designed to improve our understanding of ocean boundary layer processes in a changing Arctic Ocean. Sea ice extent in the Arctic Ocean has been decreasing since the beginning of the satellite era, meaning that open-water, as opposed to under-ice, oceanographic processes are becoming increasingly important for Arctic dynamics. One of the most fundamental differences between the open and ice-covered oceans is the presence of surface waves. Surface waves and wave-driven processes drastically alter air-sea fluxes, upper-ocean turbulence, and the dominant dynamical balance in the upper ocean.
WAAXT will be based on a series of field experiments to study the small-scale processes associated with this emerging wave climate, with a particular focus on near-surface turbulence. Three major effects of wave processes will be targeted: 1) Modification and suppression of ice formation by wave motions and the associated elevated near-surface turbulence. 2) Physical breakup of sea ice by wave motions, and the associated contributions to the modification of air-sea fluxes, upper-ocean structure, and melt rates. 3) Interactions between wave-driven turbulence, especially breaking and Langmuir circulations, with the unique salinity-based stratification in the Arctic basin. A key aspect of these processes is their horizontal variability, which will be captured using a multi-platform approach. Experimental work will begin in a natural laboratory in the Saint Lawrence Estuary and move to the Arctic as scientific and technical capacity is developed.
The long-term goal for WAAXT is to produce the data and parameterizations needed to understand climate-scale feedbacks associated with the emerging wave climate in the Arctic basin.
WAAXT will be based on a series of field experiments to study the small-scale processes associated with this emerging wave climate, with a particular focus on near-surface turbulence. Three major effects of wave processes will be targeted: 1) Modification and suppression of ice formation by wave motions and the associated elevated near-surface turbulence. 2) Physical breakup of sea ice by wave motions, and the associated contributions to the modification of air-sea fluxes, upper-ocean structure, and melt rates. 3) Interactions between wave-driven turbulence, especially breaking and Langmuir circulations, with the unique salinity-based stratification in the Arctic basin. A key aspect of these processes is their horizontal variability, which will be captured using a multi-platform approach. Experimental work will begin in a natural laboratory in the Saint Lawrence Estuary and move to the Arctic as scientific and technical capacity is developed.
The long-term goal for WAAXT is to produce the data and parameterizations needed to understand climate-scale feedbacks associated with the emerging wave climate in the Arctic basin.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/805186 |
Start date: | 01-01-2019 |
End date: | 31-12-2024 |
Total budget - Public funding: | 2 000 000,00 Euro - 2 000 000,00 Euro |
Cordis data
Original description
Wave-modulated Arctic Air-sea eXchanges and Turbulence (WAAXT) is a project designed to improve our understanding of ocean boundary layer processes in a changing Arctic Ocean. Sea ice extent in the Arctic Ocean has been decreasing since the beginning of the satellite era, meaning that open-water, as opposed to under-ice, oceanographic processes are becoming increasingly important for Arctic dynamics. One of the most fundamental differences between the open and ice-covered oceans is the presence of surface waves. Surface waves and wave-driven processes drastically alter air-sea fluxes, upper-ocean turbulence, and the dominant dynamical balance in the upper ocean.WAAXT will be based on a series of field experiments to study the small-scale processes associated with this emerging wave climate, with a particular focus on near-surface turbulence. Three major effects of wave processes will be targeted: 1) Modification and suppression of ice formation by wave motions and the associated elevated near-surface turbulence. 2) Physical breakup of sea ice by wave motions, and the associated contributions to the modification of air-sea fluxes, upper-ocean structure, and melt rates. 3) Interactions between wave-driven turbulence, especially breaking and Langmuir circulations, with the unique salinity-based stratification in the Arctic basin. A key aspect of these processes is their horizontal variability, which will be captured using a multi-platform approach. Experimental work will begin in a natural laboratory in the Saint Lawrence Estuary and move to the Arctic as scientific and technical capacity is developed.
The long-term goal for WAAXT is to produce the data and parameterizations needed to understand climate-scale feedbacks associated with the emerging wave climate in the Arctic basin.
Status
SIGNEDCall topic
ERC-2018-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)