TROJANANOHORSE | Hybrid immune-eluding nanocrystals as smart and active theranostic weapons against cancer

Summary
Nanomedicine tools for cancer treatment comprise many nanosized systems, so far developed with smart functions such as efficient drug delivery and cell targeting abilities. However they remain still undercharacterized in terms of immunogenicity, potential toxicity due to the materials itself or the unwanted release of drugs. To overcome these challenges this project aims to develop a new generation of multifunctional therapeutic and diagnostic (thus theranostics) nanosystems displaying non-immunogenicity, improved cancer treatment, cell imaging, and high safety for the hosting organism. The innovative concept behind this approach relies on a core-shell nanosystem with a therapeutically active core, i.e. a TrojaNanoHorse (TNH), here validated against leukaemia. The injectable TNH have a lipid bilayer shell derived from autologous cancer cell membrane, naturally non-immunogenic. The hemocompatibility, antithrombogenicity, and targeting ability with antibodies toward malignant blood cells will be proved during this project. Studies will show the zinc oxide nanocrystal core activation developing toxic reactive oxygen species (ROS) for cancer killing, and its green fluorescence emission. The whole TNH would go beyond the state-of-the-art due to its nature-derived biomimetic shell, absence of drugs, its safety and biodegrading fate, and green luminescent emissions for diagnosis. This project will also develop novel set-up for non-immunogenic therapy and diagnosis, impacting on future technology, new standardized protocols for nanomaterial safety assessment, and study chemical and biological mechanism of ROS development effects on cancer cell. Achieving the ultimate goal of a multifunctional TNH will require multidisciplinary expertise in chemistry, material science, biology, medicine and engineering, opening new horizons as nanomedicine tools for efficient cancer therapy with strong scientific, technological and socio-economic benefits.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/678151
Start date: 01-03-2016
End date: 31-08-2021
Total budget - Public funding: 1 489 219,00 Euro - 1 489 219,00 Euro
Cordis data

Original description

Nanomedicine tools for cancer treatment comprise many nanosized systems, so far developed with smart functions such as efficient drug delivery and cell targeting abilities. However they remain still undercharacterized in terms of immunogenicity, potential toxicity due to the materials itself or the unwanted release of drugs. To overcome these challenges this project aims to develop a new generation of multifunctional therapeutic and diagnostic (thus theranostics) nanosystems displaying non-immunogenicity, improved cancer treatment, cell imaging, and high safety for the hosting organism. The innovative concept behind this approach relies on a core-shell nanosystem with a therapeutically active core, i.e. a TrojaNanoHorse (TNH), here validated against leukaemia. The injectable TNH have a lipid bilayer shell derived from autologous cancer cell membrane, naturally non-immunogenic. The hemocompatibility, antithrombogenicity, and targeting ability with antibodies toward malignant blood cells will be proved during this project. Studies will show the zinc oxide nanocrystal core activation developing toxic reactive oxygen species (ROS) for cancer killing, and its green fluorescence emission. The whole TNH would go beyond the state-of-the-art due to its nature-derived biomimetic shell, absence of drugs, its safety and biodegrading fate, and green luminescent emissions for diagnosis. This project will also develop novel set-up for non-immunogenic therapy and diagnosis, impacting on future technology, new standardized protocols for nanomaterial safety assessment, and study chemical and biological mechanism of ROS development effects on cancer cell. Achieving the ultimate goal of a multifunctional TNH will require multidisciplinary expertise in chemistry, material science, biology, medicine and engineering, opening new horizons as nanomedicine tools for efficient cancer therapy with strong scientific, technological and socio-economic benefits.

Status

CLOSED

Call topic

ERC-StG-2015

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2015
ERC-2015-STG
ERC-StG-2015 ERC Starting Grant