NICHOIDS | Nichoid: nanoengineered three-dimensional substrate for stem cell expansion

Summary
"Mesenchymal stem cells (MSCs) raise a great interest for regenerative medicine for many clinical applications such as orthopaedic, plastic and reconstructive surgery, within autoimmune or degenerative disease treatment and as immune-suppressive agents in organ transplantation. In stem cell therapy, cells are injected in the patient after an extensive in vitro manipulation aimed at obtaining a sufficient cell number able to guarantee the therapeutic effect. Currently, stem cell ""manufacturing"" implies the use of “feeder” cells and additives from animal sources, hampering the clinical use mainly for safety reasons. In the context of an ERC Consolidator grant (ERC-CoG) that I currently lead, I introduced a novel ground-breaking concept for an easy to use, repeatable, cost-effective, and safe substrate for stem cell expansion, called the “nichoid” substrate, capable of avoiding feeder cells and dangerous additives. The substrate is polymerized with a laser in a biocompatible resin using a frontier nano-fabrication technology called “two-photon laser polymerization” (2PP). To explore the possibility of an economic exploitation of this invention covered by an Italian Patent submitted in September 2015 and already extended as PCT, the goal of this PoC is to perform a technical and commercial feasibility to move the method developed in the PI’s laboratory during the ERC grant to the market. In particular, I plan to speed up the maturity level of the technology further developing the production process of individual nichoids (fabrication up-scaling by at least a factor of 10, allowing to cover a culture surface of 5 squared cm in five hours), setting of an actionable IPR strategy (including a market assessment), identification of the suitable exploitation strategy for valorising the patent/know how (licensing). The nichoid could drastically reduce down to few years the time to market of stem cell products that is currently 20 years."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/754467
Start date: 01-06-2017
End date: 30-11-2018
Total budget - Public funding: 150 000,00 Euro - 150 000,00 Euro
Cordis data

Original description

"Mesenchymal stem cells (MSCs) raise a great interest for regenerative medicine for many clinical applications such as orthopaedic, plastic and reconstructive surgery, within autoimmune or degenerative disease treatment and as immune-suppressive agents in organ transplantation. In stem cell therapy, cells are injected in the patient after an extensive in vitro manipulation aimed at obtaining a sufficient cell number able to guarantee the therapeutic effect. Currently, stem cell ""manufacturing"" implies the use of “feeder” cells and additives from animal sources, hampering the clinical use mainly for safety reasons. In the context of an ERC Consolidator grant (ERC-CoG) that I currently lead, I introduced a novel ground-breaking concept for an easy to use, repeatable, cost-effective, and safe substrate for stem cell expansion, called the “nichoid” substrate, capable of avoiding feeder cells and dangerous additives. The substrate is polymerized with a laser in a biocompatible resin using a frontier nano-fabrication technology called “two-photon laser polymerization” (2PP). To explore the possibility of an economic exploitation of this invention covered by an Italian Patent submitted in September 2015 and already extended as PCT, the goal of this PoC is to perform a technical and commercial feasibility to move the method developed in the PI’s laboratory during the ERC grant to the market. In particular, I plan to speed up the maturity level of the technology further developing the production process of individual nichoids (fabrication up-scaling by at least a factor of 10, allowing to cover a culture surface of 5 squared cm in five hours), setting of an actionable IPR strategy (including a market assessment), identification of the suitable exploitation strategy for valorising the patent/know how (licensing). The nichoid could drastically reduce down to few years the time to market of stem cell products that is currently 20 years."

Status

CLOSED

Call topic

ERC-PoC-2016

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2016
ERC-2016-PoC
ERC-PoC-2016 ERC-Proof of Concept-2016