THEMIS | Development of a Terahertz Self-Mixing Imaging System

Summary
The ERC Advanced grant ‘TOSCA’ (grant number: 247375) focussed on the development of terahertz (THz) frequency science and technology, and in particular, investigated the electronic and photonic engineering of THz quantum cascade lasers (QCLs), and the underlying physics of these sophisticated devices.

This Proof of Concept grant (THEMIS) builds on this pioneering research, and in particular on our breakthrough developments in QCL self-mixing imaging. We will increase the technology readiness level of the patented optical-bench-based THz QCL systems developed under ‘TOSCA’, and develop a demonstrator suitable for translation of this technology to industrial end-users. The focus is on delivering a compact, inexpensive, THz frequency imaging system, which exploits self-mixing technology to deliver amplitude- and phase-resolved images whilst dispensing with an external detector.

Specific objectives are to: construct a compact and robust optical-breadboard-based self-mixing system; demonstrate the technology outside the laboratory environment, both in the field with commercial end-users, and at conferences/workshops/trade shows; and, evaluate opportunities for THz self-mixing imaging, identifying end-user applications.

To achieve this, we will engineer our current optical-bench-based technology onto a robust and compact optical breadboard with a cryogen-free cooler, and develop integrated ‘plug-and-play’ electronics and software for image reconstruction. The complete system will be suitable for transport to commercial partners, allowing demonstration and evaluation of the technology. Furthermore, we will incorporate a near-field microscopy capability, enabling sub-micron THz imaging – more than 100 times smaller than the THz free-space wavelength.

By the end of the programme, we will have identified an exploitation path by liaising directly with THz instrument manufacturers and with at least one targeted end-user
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/727541
Start date: 01-01-2017
End date: 30-06-2018
Total budget - Public funding: 149 580,00 Euro - 149 580,00 Euro
Cordis data

Original description

The ERC Advanced grant ‘TOSCA’ (grant number: 247375) focussed on the development of terahertz (THz) frequency science and technology, and in particular, investigated the electronic and photonic engineering of THz quantum cascade lasers (QCLs), and the underlying physics of these sophisticated devices.

This Proof of Concept grant (THEMIS) builds on this pioneering research, and in particular on our breakthrough developments in QCL self-mixing imaging. We will increase the technology readiness level of the patented optical-bench-based THz QCL systems developed under ‘TOSCA’, and develop a demonstrator suitable for translation of this technology to industrial end-users. The focus is on delivering a compact, inexpensive, THz frequency imaging system, which exploits self-mixing technology to deliver amplitude- and phase-resolved images whilst dispensing with an external detector.

Specific objectives are to: construct a compact and robust optical-breadboard-based self-mixing system; demonstrate the technology outside the laboratory environment, both in the field with commercial end-users, and at conferences/workshops/trade shows; and, evaluate opportunities for THz self-mixing imaging, identifying end-user applications.

To achieve this, we will engineer our current optical-bench-based technology onto a robust and compact optical breadboard with a cryogen-free cooler, and develop integrated ‘plug-and-play’ electronics and software for image reconstruction. The complete system will be suitable for transport to commercial partners, allowing demonstration and evaluation of the technology. Furthermore, we will incorporate a near-field microscopy capability, enabling sub-micron THz imaging – more than 100 times smaller than the THz free-space wavelength.

By the end of the programme, we will have identified an exploitation path by liaising directly with THz instrument manufacturers and with at least one targeted end-user

Status

CLOSED

Call topic

ERC-PoC-2016

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2016
ERC-2016-PoC
ERC-PoC-2016 ERC-Proof of Concept-2016