AquaLub | A new high-performance aqueous lubricant formulation for soft bio-contact surfaces

Summary
In the AquaLub project, we will translate an innovative aqueous lubricant technology, developed in the context of the ERC project LubSat, towards commercial applications. The technological focus is on an electrostatically-driven macromolecular self-assembly of naturally occurring proteins. Commercial aqueous lubricants market is significantly growing ($22 billion by 2025) with broad range of personal care and institutional care applications to enhance hydration and alleviate dryness-related pathologies of oral, ocular, vaginal, rectal and/or urethral tissues. In this context, hydrophilic polymers are the standard materials that provide sub-optimal lubrication properties significantly impairing the quality of life. Taking inspiration from highly sophisticated bio-lubricant saliva, engineered by nature, we propose a novel technology exploiting the self-assembly of proteins to design a porous mesh that acts as a nano-reservoir of water to provide the fluid film lubrication whilst the hydrophobic attachment of the proteins to the surface provide the boundary lubrication. These dual-benefits have not been achieved by any commercial solutions to date. This technology allows for substantial improvements on enhancing lubrication and sustaining hydration of biological soft surfaces, over existing commercially-available approaches. In this project, working through 4 work-packages, we will validate the techno-commercial feasibility of the aqueous lubricant formulation in various formats for chosen sectors and generate connections with key industrial players based on initial contacts established so far. Key activities in the proposed project will ensure demonstration of the up-scaling feasibility and validation of performance, market research and filing IP, which will allow us to build strategic alliances with selected industrial partners, explore licensing of the IP to these partners, and build a robust business case to take forward the commercialization of this technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/890644
Start date: 01-05-2020
End date: 30-04-2023
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

In the AquaLub project, we will translate an innovative aqueous lubricant technology, developed in the context of the ERC project LubSat, towards commercial applications. The technological focus is on an electrostatically-driven macromolecular self-assembly of naturally occurring proteins. Commercial aqueous lubricants market is significantly growing ($22 billion by 2025) with broad range of personal care and institutional care applications to enhance hydration and alleviate dryness-related pathologies of oral, ocular, vaginal, rectal and/or urethral tissues. In this context, hydrophilic polymers are the standard materials that provide sub-optimal lubrication properties significantly impairing the quality of life. Taking inspiration from highly sophisticated bio-lubricant saliva, engineered by nature, we propose a novel technology exploiting the self-assembly of proteins to design a porous mesh that acts as a nano-reservoir of water to provide the fluid film lubrication whilst the hydrophobic attachment of the proteins to the surface provide the boundary lubrication. These dual-benefits have not been achieved by any commercial solutions to date. This technology allows for substantial improvements on enhancing lubrication and sustaining hydration of biological soft surfaces, over existing commercially-available approaches. In this project, working through 4 work-packages, we will validate the techno-commercial feasibility of the aqueous lubricant formulation in various formats for chosen sectors and generate connections with key industrial players based on initial contacts established so far. Key activities in the proposed project will ensure demonstration of the up-scaling feasibility and validation of performance, market research and filing IP, which will allow us to build strategic alliances with selected industrial partners, explore licensing of the IP to these partners, and build a robust business case to take forward the commercialization of this technology.

Status

CLOSED

Call topic

ERC-2019-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-PoC