HeteroPlates | Halide perovskite heterostructures based on 2D nanoplates building blocks for next generation optoelectronics

Summary
Soaring demand for energy calls for out of the box thinking in research and design of materials to enable technology far beyond today’s standards.
What would be the perfect material for light mater interaction? What if we could utilize natural processes and assemble such a material, monolayer by monolayer with exquisite control over the resulting electronic structure. HeteroPlates will address these challenges using halide perovskite two dimensional nanoplates as building blocks and test beds for these ideas.
Metal halide perovskite are exciting the scientific community with high conversion efficiency and ease of device processability. But this is a double edge sword since it deems long term device stability an ongoing challenge, especially where perovskites interface other materials and create heterostructures.
Perovskite heterostructures play a crucial role, they influence electronic structure and affect device functionality, efficiency and most importantly stability. It is therefore critical to understand hetero-epitaxial growth and develop methods to create perovskite heterostructures and interfaces in a controlled fashion and characterize them at these length scales. My research program HeteroPlates will employ a bottom-up approach, taking advantage of the natural stability of colloidal 2D nanoplates, their atomically flat surfaces and tendency to self-organize. By means of colloidal synthesis, perovskite will grow, be grown and self -assembled into uniform monolayer controlled heterostructures. Using specially developed characterization methods we will achieve ground breaking control over imaging resolution of heterostructures.
These methods will be employed to create Proof-of-concept devices with new functionalities, aiming for translation of knowledge and methodologies garnered from colloidal heterostructures to higher hierarchy devices, serving future generations.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/949682
Start date: 01-03-2021
End date: 28-02-2027
Total budget - Public funding: 1 872 500,00 Euro - 1 872 500,00 Euro
Cordis data

Original description

Soaring demand for energy calls for out of the box thinking in research and design of materials to enable technology far beyond today’s standards.
What would be the perfect material for light mater interaction? What if we could utilize natural processes and assemble such a material, monolayer by monolayer with exquisite control over the resulting electronic structure. HeteroPlates will address these challenges using halide perovskite two dimensional nanoplates as building blocks and test beds for these ideas.
Metal halide perovskite are exciting the scientific community with high conversion efficiency and ease of device processability. But this is a double edge sword since it deems long term device stability an ongoing challenge, especially where perovskites interface other materials and create heterostructures.
Perovskite heterostructures play a crucial role, they influence electronic structure and affect device functionality, efficiency and most importantly stability. It is therefore critical to understand hetero-epitaxial growth and develop methods to create perovskite heterostructures and interfaces in a controlled fashion and characterize them at these length scales. My research program HeteroPlates will employ a bottom-up approach, taking advantage of the natural stability of colloidal 2D nanoplates, their atomically flat surfaces and tendency to self-organize. By means of colloidal synthesis, perovskite will grow, be grown and self -assembled into uniform monolayer controlled heterostructures. Using specially developed characterization methods we will achieve ground breaking control over imaging resolution of heterostructures.
These methods will be employed to create Proof-of-concept devices with new functionalities, aiming for translation of knowledge and methodologies garnered from colloidal heterostructures to higher hierarchy devices, serving future generations.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-STG