HighMemory | Beyond classical conditioning: Hippocampal circuits in higher-order memory processes

Summary
Animals and humans adapt to changes in the environment through the encoding and storage of previous experiences. Although associative learning involving a reinforcer has been the major focus in the field of cognition, other forms of learning are gaining popularity as they are likely more relevant and frequent in human daily choices. Indeed, associations between non-reinforcing stimuli represent the most evolutionarily advanced way to increase the chances of predicting future events and adapting individuals’ behavior. Animals are also able to form these higher-order conditioning processes, but more research is needed to understand how the brain encode and store these complex cognitive processes. In this project, I propose to study the role of hippocampo-cortical circuits in higher-order conditioning processes. These processes explain why subjects are often repulsed or attracted by stimuli, which do not have intrinsic repellent or appealing value and they were never explicitly paired with negative or positive outcomes. A proposed explanation of these “ungrounded” aversion or attraction is that these stimuli were incidentally associated with other cues directly reinforced, through a process called mediated learning (ML). However, with increased incidental associations, the subjects acquire more information, allowing them to separate the real saliences of the different stimuli. Therefore, ML evolves into “reality testing”(RT), a behavioral process that has been even less studied. These processes involve multiple brain regions and are characterized by accessible phases, making them perfect models to study the circuit-level regulation of complex behavior. By using genetic, pharmacological, imaging and mouse behavioral approaches (sensory preconditioning), HighMemory proposes to characterize at macro- (brain regions), meso- (cell-types) and micro-scale (activity changes), the causal involvement of hippocampo-cortical projections in higher-order conditioning processes.
Results, demos, etc. Show all and search (1)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/948217
Start date: 01-05-2021
End date: 30-04-2026
Total budget - Public funding: 1 499 826,00 Euro - 1 499 826,00 Euro
Cordis data

Original description

Animals and humans adapt to changes in the environment through the encoding and storage of previous experiences. Although associative learning involving a reinforcer has been the major focus in the field of cognition, other forms of learning are gaining popularity as they are likely more relevant and frequent in human daily choices. Indeed, associations between non-reinforcing stimuli represent the most evolutionarily advanced way to increase the chances of predicting future events and adapting individuals’ behavior. Animals are also able to form these higher-order conditioning processes, but more research is needed to understand how the brain encode and store these complex cognitive processes. In this project, I propose to study the role of hippocampo-cortical circuits in higher-order conditioning processes. These processes explain why subjects are often repulsed or attracted by stimuli, which do not have intrinsic repellent or appealing value and they were never explicitly paired with negative or positive outcomes. A proposed explanation of these “ungrounded” aversion or attraction is that these stimuli were incidentally associated with other cues directly reinforced, through a process called mediated learning (ML). However, with increased incidental associations, the subjects acquire more information, allowing them to separate the real saliences of the different stimuli. Therefore, ML evolves into “reality testing”(RT), a behavioral process that has been even less studied. These processes involve multiple brain regions and are characterized by accessible phases, making them perfect models to study the circuit-level regulation of complex behavior. By using genetic, pharmacological, imaging and mouse behavioral approaches (sensory preconditioning), HighMemory proposes to characterize at macro- (brain regions), meso- (cell-types) and micro-scale (activity changes), the causal involvement of hippocampo-cortical projections in higher-order conditioning processes.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)