Summary
Brittleness limits the design and lifetime of some polymeric, metallic, and almost all ceramic materials in both structural and functional engineering applications, from the design of plane engine turbine blades to the newest solid-state electrolyte in batteries. This brittleness is intrinsically present in material composition that cannot plastically deform and make them sensitive to any defect introduced during their fabrication or usage.
The goal of this project is to produce small Scale interlocking mechanism for Strong and Tough mEtamatEriaL (SSTEEL) that will provide a material independent solution to brittleness. Interlocking mechanisms provide in theory one of the most efficient way to increase toughness by creating crack blocking compressive stresses in response to tensile stresses. Because a brittle material strength is inversely linked to its size, my team and I first objective will be to develop a new process to form interlocking mechanism based on micron-sized elements using a combination of light-based additive manufacturing, shrinking ink design to access sub-printer resolution, and fragmentation. The second objective will be to implement this mechanism at an even smaller scale using rational material selection, solid state chemistry, and colloidal processing to fabricate an interfacial binder for the elements. The fracture process of SSTEEL sample will span several length scales and a specific task will be to use a combination of image correlation and modelling to fully characterise the existing damaging mechanism and inform the improvement of future designs.
These new structures and concepts developed by my group will promote the development of tough structure for today’s and future structural and functional engineering applications by changing any brittle material to become strong, stiff, deformable, and reliable materials.
The goal of this project is to produce small Scale interlocking mechanism for Strong and Tough mEtamatEriaL (SSTEEL) that will provide a material independent solution to brittleness. Interlocking mechanisms provide in theory one of the most efficient way to increase toughness by creating crack blocking compressive stresses in response to tensile stresses. Because a brittle material strength is inversely linked to its size, my team and I first objective will be to develop a new process to form interlocking mechanism based on micron-sized elements using a combination of light-based additive manufacturing, shrinking ink design to access sub-printer resolution, and fragmentation. The second objective will be to implement this mechanism at an even smaller scale using rational material selection, solid state chemistry, and colloidal processing to fabricate an interfacial binder for the elements. The fracture process of SSTEEL sample will span several length scales and a specific task will be to use a combination of image correlation and modelling to fully characterise the existing damaging mechanism and inform the improvement of future designs.
These new structures and concepts developed by my group will promote the development of tough structure for today’s and future structural and functional engineering applications by changing any brittle material to become strong, stiff, deformable, and reliable materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/948336 |
Start date: | 01-03-2021 |
End date: | 28-02-2026 |
Total budget - Public funding: | 1 499 711,00 Euro - 1 499 711,00 Euro |
Cordis data
Original description
Brittleness limits the design and lifetime of some polymeric, metallic, and almost all ceramic materials in both structural and functional engineering applications, from the design of plane engine turbine blades to the newest solid-state electrolyte in batteries. This brittleness is intrinsically present in material composition that cannot plastically deform and make them sensitive to any defect introduced during their fabrication or usage.The goal of this project is to produce small Scale interlocking mechanism for Strong and Tough mEtamatEriaL (SSTEEL) that will provide a material independent solution to brittleness. Interlocking mechanisms provide in theory one of the most efficient way to increase toughness by creating crack blocking compressive stresses in response to tensile stresses. Because a brittle material strength is inversely linked to its size, my team and I first objective will be to develop a new process to form interlocking mechanism based on micron-sized elements using a combination of light-based additive manufacturing, shrinking ink design to access sub-printer resolution, and fragmentation. The second objective will be to implement this mechanism at an even smaller scale using rational material selection, solid state chemistry, and colloidal processing to fabricate an interfacial binder for the elements. The fracture process of SSTEEL sample will span several length scales and a specific task will be to use a combination of image correlation and modelling to fully characterise the existing damaging mechanism and inform the improvement of future designs.
These new structures and concepts developed by my group will promote the development of tough structure for today’s and future structural and functional engineering applications by changing any brittle material to become strong, stiff, deformable, and reliable materials.
Status
SIGNEDCall topic
ERC-2020-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)