MetElOne | The Metallization Conditions of Element One

Summary
Element number one, hydrogen, is the simplest and most abundant element in the universe. The relative abundance is reflected in the gas giant Jupiter, where under extreme pressures and temperatures, hydrogen exists in a dense metallic fluid state. In 1935, it was predicted that such a metallic state could also be realised at considerably lower temperatures, whereby the quantum molecular solid would dissociate under compression into an atomic metal. With the development of modern quantum mechanics, this metallic state of hydrogen is now expected to exhibit a whole host of fascinating properties at high pressure, from room temperature superconductivity, to a novel superfluid liquid ground state. The pursuit of these phenomena has been the principal scientific driver in high-pressure research and inspires many from interdisciplinary fields of science. In the eight decades that have passed since the initial prediction, there has been a vast amount of interesting phenomena discovered experimentally. Breakthroughs in diamond anvil experiments in the past five years have led to the discovery of two novel solid phases, suggesting that we are tantalizingly close to the metallization conditions, but at the limit of what can be currently achieved. For now, the metallic state remains elusive. I propose a novel hydrogen research program that will combine complex diamond sculpting, time resolved spectroscopy and novel fast compression techniques to extend the pressures achievable in static compression experiments. Using these state-of-the art diagnostics, I will explore the phase diagram and pinpoint the P-T conditions at which hydrogen becomes metallic in the solid and fluid states. With my experience in ultra-high pressure studies of hydrogen, together with resources unmatched anywhere else, the project promises to resolve many outstanding questions surrounding one of the most fundamental unsolved problems in condensed matter physics: the metallization of element one.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/948895
Start date: 01-11-2020
End date: 31-10-2025
Total budget - Public funding: 1 499 365,00 Euro - 1 499 365,00 Euro
Cordis data

Original description

Element number one, hydrogen, is the simplest and most abundant element in the universe. The relative abundance is reflected in the gas giant Jupiter, where under extreme pressures and temperatures, hydrogen exists in a dense metallic fluid state. In 1935, it was predicted that such a metallic state could also be realised at considerably lower temperatures, whereby the quantum molecular solid would dissociate under compression into an atomic metal. With the development of modern quantum mechanics, this metallic state of hydrogen is now expected to exhibit a whole host of fascinating properties at high pressure, from room temperature superconductivity, to a novel superfluid liquid ground state. The pursuit of these phenomena has been the principal scientific driver in high-pressure research and inspires many from interdisciplinary fields of science. In the eight decades that have passed since the initial prediction, there has been a vast amount of interesting phenomena discovered experimentally. Breakthroughs in diamond anvil experiments in the past five years have led to the discovery of two novel solid phases, suggesting that we are tantalizingly close to the metallization conditions, but at the limit of what can be currently achieved. For now, the metallic state remains elusive. I propose a novel hydrogen research program that will combine complex diamond sculpting, time resolved spectroscopy and novel fast compression techniques to extend the pressures achievable in static compression experiments. Using these state-of-the art diagnostics, I will explore the phase diagram and pinpoint the P-T conditions at which hydrogen becomes metallic in the solid and fluid states. With my experience in ultra-high pressure studies of hydrogen, together with resources unmatched anywhere else, the project promises to resolve many outstanding questions surrounding one of the most fundamental unsolved problems in condensed matter physics: the metallization of element one.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-STG