RandSCALES | Bridging Scales in Random Materials

Summary
The identification and justification of scaling limits is a central theme in modern PDE theory, reflected for instance in the theories of homogenization and singular limits. In many multiscale PDE models, randomness plays a crucial role: In random media, the quantitative homogenization process is driven by decorrelation and concentration of measure; for ill-posed evolution problems like many interface evolution equations, random noise may provide a regularization, potentially restoring well-posedness and hence approximability by numerical schemes. In the present project, we pursue a program to achieve a deeper understanding of the role of randomness in multiscale PDEs. We focus on three important, yet largely unexplored, aspects:

A) We develop a quantitative stochastic homogenization theory for nonlinear material models, ranging from variational models for brittle fracture over models from statistical mechanics to the motion of interfaces in random media. A key challenge is posed by the non-convex structure of the models, giving rise to rough energy landscapes and the emergence of complex physical phenomena.

B) We establish generalizations of homogenization in the absence of scale separation, a problem naturally posed in the framework of random media. By developing new high-dimensional approximability results, we will contribute to uncertainty quantification and the design of numerical homogenization schemes with lower computational complexity.

C) We develop a theory of stability and approximability of interface evolution problems past topology changes, a setting in which randomness may lead to the regularization of ill-posed evolutions and thereby allow for the derivation of error estimates for numerical approximation schemes. By relying on energy methods, we avoid the use of comparison principles, greatly enhancing the scope of applicability of our theory.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/948819
Start date: 01-03-2021
End date: 28-02-2026
Total budget - Public funding: 1 142 899,00 Euro - 1 142 899,00 Euro
Cordis data

Original description

The identification and justification of scaling limits is a central theme in modern PDE theory, reflected for instance in the theories of homogenization and singular limits. In many multiscale PDE models, randomness plays a crucial role: In random media, the quantitative homogenization process is driven by decorrelation and concentration of measure; for ill-posed evolution problems like many interface evolution equations, random noise may provide a regularization, potentially restoring well-posedness and hence approximability by numerical schemes. In the present project, we pursue a program to achieve a deeper understanding of the role of randomness in multiscale PDEs. We focus on three important, yet largely unexplored, aspects:

A) We develop a quantitative stochastic homogenization theory for nonlinear material models, ranging from variational models for brittle fracture over models from statistical mechanics to the motion of interfaces in random media. A key challenge is posed by the non-convex structure of the models, giving rise to rough energy landscapes and the emergence of complex physical phenomena.

B) We establish generalizations of homogenization in the absence of scale separation, a problem naturally posed in the framework of random media. By developing new high-dimensional approximability results, we will contribute to uncertainty quantification and the design of numerical homogenization schemes with lower computational complexity.

C) We develop a theory of stability and approximability of interface evolution problems past topology changes, a setting in which randomness may lead to the regularization of ill-posed evolutions and thereby allow for the derivation of error estimates for numerical approximation schemes. By relying on energy methods, we avoid the use of comparison principles, greatly enhancing the scope of applicability of our theory.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-STG