Summary
Ultrasound (US) is the modality of choice for imaging and functional measurements of the cardiovascular system due to its high spatial and temporal resolution. In recent years, the use of US has been on the rise owing to huge advancements in acquisition speed and resolution. Nevertheless, because of physical constraints, several issues —limited field-of-view, refraction, resolution and, contrast anisotropy— cannot be resolved using a single probe.
This proposal will aim at tackling these issues introducing Multi-perspective Ultrasound Strain Imaging & Elastography (MUSE). MUSE will push the frontiers of 3-D US imaging by introducing a novel, multi-perspective 3-D US system. The revolutionary system will consist of two synchronously controlled 3-D matrix arrays and advanced signal and image processing to improve geometric and functional measurements (strain, elasticity). Validation will be performed for two applications: cardiac strain imaging in patients with aortic valve stenosis (AoS) and elastography of abdominal aortic aneurysms (AAA).
Fusion of dual-probe data will be challenged and achieved by new algorithms, preserving important features and improving both contrast and field-of-view. Advanced 3-D processing of the raw US data will be developed for motion and strain imaging. A novel compounding technique, fusion strain imaging, will combine multi-perspective strain data to improve accuracy and precision. A comprehensive framework for system verification and validation will be built, comprising US simulations, ex vivo experiments, and in vivo pilot studies on healthy volunteers. The proposed technique will be validated in AoS and AAA patients.
Ultimately, MUSE will introduce a non-invasive, ground-breaking US platform for functional screening and follow-up, and a breakthrough in early diagnosis, clinical decision making, and risk assessment of cardiovascular disease. Moreover, MUSE has the potential to replace invasive or costly imaging modalities with US.
This proposal will aim at tackling these issues introducing Multi-perspective Ultrasound Strain Imaging & Elastography (MUSE). MUSE will push the frontiers of 3-D US imaging by introducing a novel, multi-perspective 3-D US system. The revolutionary system will consist of two synchronously controlled 3-D matrix arrays and advanced signal and image processing to improve geometric and functional measurements (strain, elasticity). Validation will be performed for two applications: cardiac strain imaging in patients with aortic valve stenosis (AoS) and elastography of abdominal aortic aneurysms (AAA).
Fusion of dual-probe data will be challenged and achieved by new algorithms, preserving important features and improving both contrast and field-of-view. Advanced 3-D processing of the raw US data will be developed for motion and strain imaging. A novel compounding technique, fusion strain imaging, will combine multi-perspective strain data to improve accuracy and precision. A comprehensive framework for system verification and validation will be built, comprising US simulations, ex vivo experiments, and in vivo pilot studies on healthy volunteers. The proposed technique will be validated in AoS and AAA patients.
Ultimately, MUSE will introduce a non-invasive, ground-breaking US platform for functional screening and follow-up, and a breakthrough in early diagnosis, clinical decision making, and risk assessment of cardiovascular disease. Moreover, MUSE has the potential to replace invasive or costly imaging modalities with US.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/757958 |
Start date: | 01-02-2018 |
End date: | 31-01-2024 |
Total budget - Public funding: | 1 998 504,75 Euro - 1 998 504,00 Euro |
Cordis data
Original description
Ultrasound (US) is the modality of choice for imaging and functional measurements of the cardiovascular system due to its high spatial and temporal resolution. In recent years, the use of US has been on the rise owing to huge advancements in acquisition speed and resolution. Nevertheless, because of physical constraints, several issues —limited field-of-view, refraction, resolution and, contrast anisotropy— cannot be resolved using a single probe.This proposal will aim at tackling these issues introducing Multi-perspective Ultrasound Strain Imaging & Elastography (MUSE). MUSE will push the frontiers of 3-D US imaging by introducing a novel, multi-perspective 3-D US system. The revolutionary system will consist of two synchronously controlled 3-D matrix arrays and advanced signal and image processing to improve geometric and functional measurements (strain, elasticity). Validation will be performed for two applications: cardiac strain imaging in patients with aortic valve stenosis (AoS) and elastography of abdominal aortic aneurysms (AAA).
Fusion of dual-probe data will be challenged and achieved by new algorithms, preserving important features and improving both contrast and field-of-view. Advanced 3-D processing of the raw US data will be developed for motion and strain imaging. A novel compounding technique, fusion strain imaging, will combine multi-perspective strain data to improve accuracy and precision. A comprehensive framework for system verification and validation will be built, comprising US simulations, ex vivo experiments, and in vivo pilot studies on healthy volunteers. The proposed technique will be validated in AoS and AAA patients.
Ultimately, MUSE will introduce a non-invasive, ground-breaking US platform for functional screening and follow-up, and a breakthrough in early diagnosis, clinical decision making, and risk assessment of cardiovascular disease. Moreover, MUSE has the potential to replace invasive or costly imaging modalities with US.
Status
CLOSEDCall topic
ERC-2017-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)