MetalFuel | Towards a full multi-scale understanding of zero-carbon metal fuel combustion

Summary
Energy-on-demand is a cornerstone of modern society. Currently, the primary source of energy is fossil fuel, but in view of undeniable climate warming, an alternative fuel is dearly wanted. Metal powders are a tantalizing, totally carbon-free and recyclable option for such a fuel. Its combustion products are solid metal-oxide particles, which, after capture, can be recycled to metal powders again using green electricity. The technology required to burn metal powder aerosols in a stable and reliable way is, however, still in its infancy. Rapid growth of the technology is unlikely, because fundamental understanding of combustion of dense metal aerosols is largely lacking. Herein lies a virgin field of fundamental research, with huge potential for practical application. Fundamental principles behind metal fuel flames are addressed in this proposal, in a step-wise, combined experimental & theoretical/numerical approach. On single-particle level, I will unravel the influence of mutual interactions. Their consecutive ignition will create combustion wave fronts traveling through metal aerosols. Such planar flame fronts will be created in the lab as well as studied numerically and subsequently used as building block for modeling 3D flames. Finally, Bunsen-type burners will be developed to characterize turbulent, 3D flames. Detailed experiments using microscopy for metal-(oxide) particle composition as well as new optical diagnostic techniques on dedicated, lab-scale metal aerosol burners will serve as benchmarks for validation of models. I have a 30 years track record in theoretical, numerical & experimental combustion research, focusing on fundamental aspects of combustion processes relevant to practical applications. In this project this experience will be the foundation from which to explore a new direction in fundamental combustion research. This METALFUEL project will boost to a new branch of combustion research, with the potential for disruptive applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/884916
Start date: 01-10-2020
End date: 30-09-2025
Total budget - Public funding: 2 492 992,50 Euro - 2 492 992,00 Euro
Cordis data

Original description

Energy-on-demand is a cornerstone of modern society. Currently, the primary source of energy is fossil fuel, but in view of undeniable climate warming, an alternative fuel is dearly wanted. Metal powders are a tantalizing, totally carbon-free and recyclable option for such a fuel. Its combustion products are solid metal-oxide particles, which, after capture, can be recycled to metal powders again using green electricity. The technology required to burn metal powder aerosols in a stable and reliable way is, however, still in its infancy. Rapid growth of the technology is unlikely, because fundamental understanding of combustion of dense metal aerosols is largely lacking. Herein lies a virgin field of fundamental research, with huge potential for practical application. Fundamental principles behind metal fuel flames are addressed in this proposal, in a step-wise, combined experimental & theoretical/numerical approach. On single-particle level, I will unravel the influence of mutual interactions. Their consecutive ignition will create combustion wave fronts traveling through metal aerosols. Such planar flame fronts will be created in the lab as well as studied numerically and subsequently used as building block for modeling 3D flames. Finally, Bunsen-type burners will be developed to characterize turbulent, 3D flames. Detailed experiments using microscopy for metal-(oxide) particle composition as well as new optical diagnostic techniques on dedicated, lab-scale metal aerosol burners will serve as benchmarks for validation of models. I have a 30 years track record in theoretical, numerical & experimental combustion research, focusing on fundamental aspects of combustion processes relevant to practical applications. In this project this experience will be the foundation from which to explore a new direction in fundamental combustion research. This METALFUEL project will boost to a new branch of combustion research, with the potential for disruptive applications.

Status

SIGNED

Call topic

ERC-2019-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2019-ADG