RecoverInFlame | T cell-driven inflammatory mechanisms promote recovery after acute brain injury

Summary
The overall goal of this project is to investigate T cells as “Trojan horses” to improve recovery from brain injuries – we will gain novel insights on how T cells promote neurologic recovery by modulating the cerebral micromilieu and how these pathomechanisms can be therapeutically targeted.
Inflammation is a common response to acute brain injuries, which are a leading cause of morbidity and mortality. I have recently identified continuous cerebral T cell recruitment as a hallmark of a long-lasting and profound neuroinflammation after acute brain injury. While a detrimental effect of T cells in the acute phase has been well documented, the pathophysiological consequences and therapeutic potential of T cell-driven chronic inflammation for recovery after brain injury are unknown. Interestingly, my recent findings indicate that T cell fate is orchestrated in the gut via modulation of commensal bacteria and that T cells potently promote stroke recovery. Building up on these recent findings, I hypothesize that T cells contribute substantially to the recovery after brain injury by inflammation-driven remodeling. Using several innovative methodologies applied for the first time to recovery after brain injury, we will firstly investigate the contribution of T cells on cortical connectivity, spine plasticity and mechanisms of glial responses. Next, we will analyze the contribution of the gut microbiota to modulate the chronic neuroinflammatory response via a pro-regenerative polarization of T helper cells. Finally, we will test the generalizability and translational robustness of our findings in models of various acute brain injuries and common comorbidities. Results from this project are likely to open up a new research field on T cell-driven neurologic recovery after brain injury, thereby revolutionizing our pathomechanistic understanding and provide novel therapeutic strategies for one of the most pressing medical problems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/802305
Start date: 01-11-2018
End date: 30-04-2024
Total budget - Public funding: 1 487 500,00 Euro - 1 487 500,00 Euro
Cordis data

Original description

The overall goal of this project is to investigate T cells as “Trojan horses” to improve recovery from brain injuries – we will gain novel insights on how T cells promote neurologic recovery by modulating the cerebral micromilieu and how these pathomechanisms can be therapeutically targeted.
Inflammation is a common response to acute brain injuries, which are a leading cause of morbidity and mortality. I have recently identified continuous cerebral T cell recruitment as a hallmark of a long-lasting and profound neuroinflammation after acute brain injury. While a detrimental effect of T cells in the acute phase has been well documented, the pathophysiological consequences and therapeutic potential of T cell-driven chronic inflammation for recovery after brain injury are unknown. Interestingly, my recent findings indicate that T cell fate is orchestrated in the gut via modulation of commensal bacteria and that T cells potently promote stroke recovery. Building up on these recent findings, I hypothesize that T cells contribute substantially to the recovery after brain injury by inflammation-driven remodeling. Using several innovative methodologies applied for the first time to recovery after brain injury, we will firstly investigate the contribution of T cells on cortical connectivity, spine plasticity and mechanisms of glial responses. Next, we will analyze the contribution of the gut microbiota to modulate the chronic neuroinflammatory response via a pro-regenerative polarization of T helper cells. Finally, we will test the generalizability and translational robustness of our findings in models of various acute brain injuries and common comorbidities. Results from this project are likely to open up a new research field on T cell-driven neurologic recovery after brain injury, thereby revolutionizing our pathomechanistic understanding and provide novel therapeutic strategies for one of the most pressing medical problems.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG