ReceptorPAINT | Imaging Receptomics as a tool for biomedical discovery

Summary
Targeting cell surface proteins to alter cellular behavior is a major aim of many therapeutics. Recently approved immunotherapeutic drugs trigger anti-tumor immunity by disrupting key cell surface proteins that guide immune cell interactions. Despite the cell surface representing a major site of drug action, its nanoscale organization remains poorly characterized. The main reason for this is largely due to technical limitations of current fluorescence and super-resolution imaging approaches, which do not allow high-throughput measurements of the spatial localization and interaction of hundreds of proteins with true single-protein- resolution on cell surfaces. We here propose to develop exactly such a disruptive capability by advancing recently developed DNA-PAINT microscopy to enable the visualization and quantification of all relevant cell surface proteins at single-protein-resolution. We will achieve this by innovating DNA-PAINT to enable isotropic 1-nm-resolution, develop DNA-based protein binders against all cell surface proteins, and devise multiplexing capabilities to resolve them with single-protein-resolution over large fields of view, reaching the ultimate goal of enabling Imaging Receptomics. We will then apply this to test the central hypothesis that surface protein architecture and patterning on immune and tumor cells dictates the outcome of their interactions. We will map the nanoscale organization of hundreds of key immunomodulatory surface proteins and their corresponding ligands on key interacting pairs of immune cells relevant to current immunotherapy approaches (dendritic cells and T cells), as well as tumor cells. This will yield fundamental insights into the molecular architecture of their interactions and potentially enable the future development of more refined “pattern”-based immunotherapeutics. Collectively, this highly multidisciplinary and novel approach has the potential to be ground-breaking across a range of research fields.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101003275
Start date: 01-04-2022
End date: 31-03-2027
Total budget - Public funding: 2 348 025,00 Euro - 2 348 025,00 Euro
Cordis data

Original description

Targeting cell surface proteins to alter cellular behavior is a major aim of many therapeutics. Recently approved immunotherapeutic drugs trigger anti-tumor immunity by disrupting key cell surface proteins that guide immune cell interactions. Despite the cell surface representing a major site of drug action, its nanoscale organization remains poorly characterized. The main reason for this is largely due to technical limitations of current fluorescence and super-resolution imaging approaches, which do not allow high-throughput measurements of the spatial localization and interaction of hundreds of proteins with true single-protein- resolution on cell surfaces. We here propose to develop exactly such a disruptive capability by advancing recently developed DNA-PAINT microscopy to enable the visualization and quantification of all relevant cell surface proteins at single-protein-resolution. We will achieve this by innovating DNA-PAINT to enable isotropic 1-nm-resolution, develop DNA-based protein binders against all cell surface proteins, and devise multiplexing capabilities to resolve them with single-protein-resolution over large fields of view, reaching the ultimate goal of enabling Imaging Receptomics. We will then apply this to test the central hypothesis that surface protein architecture and patterning on immune and tumor cells dictates the outcome of their interactions. We will map the nanoscale organization of hundreds of key immunomodulatory surface proteins and their corresponding ligands on key interacting pairs of immune cells relevant to current immunotherapy approaches (dendritic cells and T cells), as well as tumor cells. This will yield fundamental insights into the molecular architecture of their interactions and potentially enable the future development of more refined “pattern”-based immunotherapeutics. Collectively, this highly multidisciplinary and novel approach has the potential to be ground-breaking across a range of research fields.

Status

SIGNED

Call topic

ERC-2020-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-COG ERC CONSOLIDATOR GRANTS