CATALIGHT | Exploiting Energy Flow in Plasmonic-Catalytic Colloids

Summary
The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.

CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts.

The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/802989
Start date: 01-01-2019
End date: 31-12-2023
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.

CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts.

The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells.

Status

CLOSED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG