NICCA | Non-coding RNA and Intercellular Communication in Cardiac Ageing

Summary
Life expectancy in the European Union is rising and the prevalence of age-induced cardiovascular disease increases concomitantly. The main clinical presentation of age-induced cardiovascular disease is heart failure with preserved ejection fraction (HFpEF). HFpEF is a complex disease involving different cell types and mechanisms that contribute to impaired relaxation of cardiomyocytes. Currently there is no appropriate treatment for HFpEF. This proposal aims to better understand the molecular mechanisms behind intercellular communication and ageing that lead to HFpEF.
Long non-coding RNAs (lncRNAs) are emerging as novel key regulators of cellular functions and we hypothesize that lncRNAs contribute to ageing-induced cardiac dysfunction, including HFpEF. Preliminary experiments show that several long non-coding RNAs (lncRNAs) are differentially regulated during cardiac ageing, including the cardiomyocyte-enriched lncRNA Sarrah that is essential for cardiomyocyte survival. We propose to extensively characterize the role of Sarrah in HFpEF and to identify other lncRNAs that are involved in cardiac ageing. Importantly, we will focus those lncRNAs that are also affected in a cohort of human HFpEF patients. Furthermore, since disturbed intercellular communication is a hallmark of both ageing and HFpEF, we will identify lncRNAs that regulate endothelial cell-cardiomyocyte crosstalk. We will use state-of-the-art in vitro and in vivo models to assess cardiac ageing and function upon gain-of-function and loss-of-function of lncRNAs in a cell-type specific manner.
Understanding the role that Sarrah and other lncRNAs play in cardiac ageing and HFpEF will highlight novel potential therapeutic targets to attenuate age-induced cardiac dysfunction and will increase our knowledge of the underlying mechanisms controlling intercellular communication and cardiac function.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101002599
Start date: 01-04-2021
End date: 31-03-2026
Total budget - Public funding: 1 999 690,00 Euro - 1 999 690,00 Euro
Cordis data

Original description

Life expectancy in the European Union is rising and the prevalence of age-induced cardiovascular disease increases concomitantly. The main clinical presentation of age-induced cardiovascular disease is heart failure with preserved ejection fraction (HFpEF). HFpEF is a complex disease involving different cell types and mechanisms that contribute to impaired relaxation of cardiomyocytes. Currently there is no appropriate treatment for HFpEF. This proposal aims to better understand the molecular mechanisms behind intercellular communication and ageing that lead to HFpEF.
Long non-coding RNAs (lncRNAs) are emerging as novel key regulators of cellular functions and we hypothesize that lncRNAs contribute to ageing-induced cardiac dysfunction, including HFpEF. Preliminary experiments show that several long non-coding RNAs (lncRNAs) are differentially regulated during cardiac ageing, including the cardiomyocyte-enriched lncRNA Sarrah that is essential for cardiomyocyte survival. We propose to extensively characterize the role of Sarrah in HFpEF and to identify other lncRNAs that are involved in cardiac ageing. Importantly, we will focus those lncRNAs that are also affected in a cohort of human HFpEF patients. Furthermore, since disturbed intercellular communication is a hallmark of both ageing and HFpEF, we will identify lncRNAs that regulate endothelial cell-cardiomyocyte crosstalk. We will use state-of-the-art in vitro and in vivo models to assess cardiac ageing and function upon gain-of-function and loss-of-function of lncRNAs in a cell-type specific manner.
Understanding the role that Sarrah and other lncRNAs play in cardiac ageing and HFpEF will highlight novel potential therapeutic targets to attenuate age-induced cardiac dysfunction and will increase our knowledge of the underlying mechanisms controlling intercellular communication and cardiac function.

Status

SIGNED

Call topic

ERC-2020-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-COG ERC CONSOLIDATOR GRANTS