ZoomDeep | Zooming in on the core-mantle boundary

Summary
The core-mantle boundary (CMB) is the interface between the liquid iron core and the silicate solid mantle, and is the most significant internal boundary of the Earth. The core and the mantle interact across the boundary through transfer of heat and material, and various coupling mechanisms. While the nature and variability of these interactions remains uncertain, they strongly affect the convection in the mantle, responsible for plate tectonics and intra-plate volcanism, as well as the much more vigorous convection in the core, responsible for the geodynamo. Constraining the interactions at the CMB is crucial to understanding physical processes in the deep Earth and the thermal, compositional, and dynamical evolution of the Earth.
The CMB interactions are strongly controlled by heterogeneous structures on or near the boundary. On the mantle side, seismological imaging has observed slow velocity layering and patches, but their physical significance remains uncertain, and it is unclear whether they represent global or local features. Turning to the core, suggestions of a stable light-element-enriched layer have been made. The estimated thickness of such a layer varies from 40 to 450 km, and the origin of the inferred light elements is heavily debated.
In ZoomDeep, I propose innovative seismic techniques to image the structure near the CMB with unprecedented resolution. One technique, dubbed 'the Frequency Fan', will be newly developed, while another technique has recently been successfully applied at the Earth's surface and will be adapted to the CMB. ZoomDeep will lead to the first high-resolution maps of the structures near the CMB and will specifically focus on the roots of mantle upwellings beneath volcanic hotspots. The implications of these maps on fundamental questions impacting core and mantle dynamics will be assessed in multi-disciplinary approaches. The results of this work will transform our understanding of the dynamics and evolution of the Earth.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/804071
Start date: 01-01-2019
End date: 30-06-2025
Total budget - Public funding: 1 407 784,00 Euro - 1 407 784,00 Euro
Cordis data

Original description

The core-mantle boundary (CMB) is the interface between the liquid iron core and the silicate solid mantle, and is the most significant internal boundary of the Earth. The core and the mantle interact across the boundary through transfer of heat and material, and various coupling mechanisms. While the nature and variability of these interactions remains uncertain, they strongly affect the convection in the mantle, responsible for plate tectonics and intra-plate volcanism, as well as the much more vigorous convection in the core, responsible for the geodynamo. Constraining the interactions at the CMB is crucial to understanding physical processes in the deep Earth and the thermal, compositional, and dynamical evolution of the Earth.
The CMB interactions are strongly controlled by heterogeneous structures on or near the boundary. On the mantle side, seismological imaging has observed slow velocity layering and patches, but their physical significance remains uncertain, and it is unclear whether they represent global or local features. Turning to the core, suggestions of a stable light-element-enriched layer have been made. The estimated thickness of such a layer varies from 40 to 450 km, and the origin of the inferred light elements is heavily debated.
In ZoomDeep, I propose innovative seismic techniques to image the structure near the CMB with unprecedented resolution. One technique, dubbed 'the Frequency Fan', will be newly developed, while another technique has recently been successfully applied at the Earth's surface and will be adapted to the CMB. ZoomDeep will lead to the first high-resolution maps of the structures near the CMB and will specifically focus on the roots of mantle upwellings beneath volcanic hotspots. The implications of these maps on fundamental questions impacting core and mantle dynamics will be assessed in multi-disciplinary approaches. The results of this work will transform our understanding of the dynamics and evolution of the Earth.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG