CellsBox | CellsBox: a modular system for automated cell imaging experiments

Summary
"Based on research from ERC CoG HydroSync where we developed both hardware and software approaches to cell imaging, we are in the position to develop translationally a cell culture and imaging unit, with integrated modular hardware and analysis software allowing automated robust performance. This promises to not just significantly bring down the costs for a broad spectrum of cell biology and single cell imaging experiments. It will also make these experiments more reproducible, systematic and easily accessible in standardised fashion. Perhaps most important of all, by designing in an integrated (whilst modular architecture) system all the components of the experiment (optics, mechanics, cell environment and fluids control, cell sample chambers, analysis), we make it possible to rapidly feedback information on the state of the sample into actions by any of the other modules, thus allowing a new space of experimental design. This automation in running the experimental stage of cell biology, microbiology, infectious disease models, early embryo developmental work, etc (i.e. any of the many situations where one aims to follow the properties of individual cells) also aligns to the current revolution triggered by machine and deep learning approaches. We can imagine a day when integrated experimental ""CellsBoxes"" perform, in a hypothesis-driven optimised and tireless fashion, a battery of experiments that today would simply be inconceivable. This project addresses one of the experimental bottlenecks that still make too much of biological and medical research subject to bias and poor reproducibility, and change the nature of point-of-care cell tissue analysis. It will be disruptive in the current landscape of optical cell imaging, a market > $1bn globally."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/825238
Start date: 01-03-2019
End date: 28-02-2021
Total budget - Public funding: 149 931,00 Euro - 149 931,00 Euro
Cordis data

Original description

"Based on research from ERC CoG HydroSync where we developed both hardware and software approaches to cell imaging, we are in the position to develop translationally a cell culture and imaging unit, with integrated modular hardware and analysis software allowing automated robust performance. This promises to not just significantly bring down the costs for a broad spectrum of cell biology and single cell imaging experiments. It will also make these experiments more reproducible, systematic and easily accessible in standardised fashion. Perhaps most important of all, by designing in an integrated (whilst modular architecture) system all the components of the experiment (optics, mechanics, cell environment and fluids control, cell sample chambers, analysis), we make it possible to rapidly feedback information on the state of the sample into actions by any of the other modules, thus allowing a new space of experimental design. This automation in running the experimental stage of cell biology, microbiology, infectious disease models, early embryo developmental work, etc (i.e. any of the many situations where one aims to follow the properties of individual cells) also aligns to the current revolution triggered by machine and deep learning approaches. We can imagine a day when integrated experimental ""CellsBoxes"" perform, in a hypothesis-driven optimised and tireless fashion, a battery of experiments that today would simply be inconceivable. This project addresses one of the experimental bottlenecks that still make too much of biological and medical research subject to bias and poor reproducibility, and change the nature of point-of-care cell tissue analysis. It will be disruptive in the current landscape of optical cell imaging, a market > $1bn globally."

Status

CLOSED

Call topic

ERC-2018-PoC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-PoC