GLISS | Gliding epitaxy for inorganic space-power sheets

Summary
Current satellite technologies are limited by the photovoltaic (PV) panels they require for power generation. Despite steady advances in efficiency afforded by modern III-V multijunction PV, these large, rigid panels are expensive to produce and launch due to their heavy on-wafer architecture and thick protective coverglass, which is necessary to prevent radiation damage. I will develop and demonstrate ultra-thin (
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/853365
Start date: 01-01-2020
End date: 30-06-2025
Total budget - Public funding: 1 797 789,00 Euro - 1 797 789,00 Euro
Cordis data

Original description

Current satellite technologies are limited by the photovoltaic (PV) panels they require for power generation. Despite steady advances in efficiency afforded by modern III-V multijunction PV, these large, rigid panels are expensive to produce and launch due to their heavy on-wafer architecture and thick protective coverglass, which is necessary to prevent radiation damage. I will develop and demonstrate ultra-thin (

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG