Regen-membrane | Pulsed Electrophoretic Deposition to give Membranes for Regenerative Medicine

Summary
Collagen membranes are a major tool in wound regeneration, encouraging cell growth, providing barrier functions, and improving cosmetic outcomes, with the market of membranes for dental wound repair alone expected to nearly double to $200m by 2023. Currently used membranes however suffer a range of limitations in size, shape, and biocompatibility, making surgeries complex and the wound healing behaviour hard to predict. As such, there is a need for new collagen based membranes to help both clinicians and patients.

We have developed a novel technology, based on electrophoretic deposition, to produce free-standing, collagen-based membranes that do not suffer from these limitations. Using our technology, rapid and simple production of large scale or complex shaped collagen membranes is possible, giving clinicians more options for difficult wound management. Furthermore, our technology allows for production of textured and curved membranes, including tubes, which currently cannot be fabricated and would be highly desirable for roles such as peripheral nerve regeneration and maxillofacial surgery.

Additionally, we can open new market areas by producing membranes with aligned fibres for high suturability, and membranes with live cells embedded within that can greatly increase the rate of healing, reduce patient discomfort, and improve cosmetic outcomes. We anticipate that our cell-laden membranes will be able to be transportable in a partially dehydrated state, allowing for ease of storage and transport.

Finally, our technology allows us to combine these attributes together to provide membranes tailored towards specific clinical needs, something not possible with the “one size fits all” membranes currently on the market. We believe this will make our products highly desirable and give us a significant advantage in a rapidly growing healthcare market.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/862111
Start date: 01-10-2019
End date: 30-09-2021
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Collagen membranes are a major tool in wound regeneration, encouraging cell growth, providing barrier functions, and improving cosmetic outcomes, with the market of membranes for dental wound repair alone expected to nearly double to $200m by 2023. Currently used membranes however suffer a range of limitations in size, shape, and biocompatibility, making surgeries complex and the wound healing behaviour hard to predict. As such, there is a need for new collagen based membranes to help both clinicians and patients.

We have developed a novel technology, based on electrophoretic deposition, to produce free-standing, collagen-based membranes that do not suffer from these limitations. Using our technology, rapid and simple production of large scale or complex shaped collagen membranes is possible, giving clinicians more options for difficult wound management. Furthermore, our technology allows for production of textured and curved membranes, including tubes, which currently cannot be fabricated and would be highly desirable for roles such as peripheral nerve regeneration and maxillofacial surgery.

Additionally, we can open new market areas by producing membranes with aligned fibres for high suturability, and membranes with live cells embedded within that can greatly increase the rate of healing, reduce patient discomfort, and improve cosmetic outcomes. We anticipate that our cell-laden membranes will be able to be transportable in a partially dehydrated state, allowing for ease of storage and transport.

Finally, our technology allows us to combine these attributes together to provide membranes tailored towards specific clinical needs, something not possible with the “one size fits all” membranes currently on the market. We believe this will make our products highly desirable and give us a significant advantage in a rapidly growing healthcare market.

Status

CLOSED

Call topic

ERC-2019-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-PoC