EFMA | Equidistribution, fractal measures and arithmetic

Summary
The subject of this proposal lies at the crossroads of analysis, additive combinatorics, number theory and fractal geometry exploring equidistribution phenomena for random walks on groups and group actions and regularity properties of self-similar, self-affine and Furstenberg boundary measures and other kinds of stationary measures. Many of the problems I will study in this project are deeply linked with problems in number theory, such as bounds for the separation between algebraic numbers, Lehmer's conjecture and irreducibility of polynomials.

The central aim of the project is to gain insight into and eventually resolve problems in several main directions including the following. I will address the main challenges that remain in our understanding of the spectral gap of averaging operators on finite groups and Lie groups and I will study the applications of such estimates. I will build on the dramatic recent progress on a problem of Erdos from 1939 regarding Bernoulli convolutions. I will also investigate other families of fractal measures. I will examine the arithmetic properties (such as irreducibility and their Galois groups) of generic polynomials with bounded coefficients and in other related families of polynomials.

While these lines of research may seem unrelated, both the problems and the methods I propose to study them are deeply connected.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/803711
Start date: 01-10-2018
End date: 31-03-2024
Total budget - Public funding: 1 334 109,00 Euro - 1 334 109,00 Euro
Cordis data

Original description

The subject of this proposal lies at the crossroads of analysis, additive combinatorics, number theory and fractal geometry exploring equidistribution phenomena for random walks on groups and group actions and regularity properties of self-similar, self-affine and Furstenberg boundary measures and other kinds of stationary measures. Many of the problems I will study in this project are deeply linked with problems in number theory, such as bounds for the separation between algebraic numbers, Lehmer's conjecture and irreducibility of polynomials.

The central aim of the project is to gain insight into and eventually resolve problems in several main directions including the following. I will address the main challenges that remain in our understanding of the spectral gap of averaging operators on finite groups and Lie groups and I will study the applications of such estimates. I will build on the dramatic recent progress on a problem of Erdos from 1939 regarding Bernoulli convolutions. I will also investigate other families of fractal measures. I will examine the arithmetic properties (such as irreducibility and their Galois groups) of generic polynomials with bounded coefficients and in other related families of polynomials.

While these lines of research may seem unrelated, both the problems and the methods I propose to study them are deeply connected.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG