FOODFORLIFE | Life-long cross-generational priming of the hypothalamus for obesity

Summary
Evolutionary success drives continuous human adaptation. A pervasive challenge is the substantial change in the composition and nutritional value of diets available. This is particularly relevant for child-bearing women because metabolic bias through diet composition can adversely affects pregnancy outcomes. Even though clinical and experimental studies correlate maternal obesity during pregnancy (affecting ~30% world-wide) with congenital metabolic illnesses, a causal relationship between maternal obesity, impairment in neuroendocrine development and ensuing deficits in metabolic control of affected offspring is as yet missing. The hypothalamus is the neuroendocrine interface linking the brain and periphery. Thus, we hypothesize that maternal obesity could evoke permanent molecular changes in hypothalamic neurons of the offspring to compromise their plasticity and adaptive repertoire. This notion is on the backdrop of our recent success in defining, by singe-cell RNA-seq and brain-wide imaging, the developmental trajectory of neurons that build the mammalian hypothalamus, and in discovering the function of novel neuronal subtypes. Here, we will determine molecular, cellular and network-level changes in the hypothalamus of offspring born to obese mothers. We will combine single-cell RNA-seq and ATAC-seq in the same neurons to precisely catalogue permanent modifications to gene expression at successive developmental stages in mice. We will particularly interrogate molecular determinants that can impair the neuronal circuitry controlling food intake, including leptin and endocannabinoid interplay as a candidate. We will complement these data by identifying novel cellular sites of hormone secretion that shape brain and bodily architecture and are sensitive to maternal obesity. Overall, our work will produce new understanding of the life-long consequences of metabolic programming of the developing brain.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101021016
Start date: 01-01-2022
End date: 31-12-2026
Total budget - Public funding: 2 498 960,00 Euro - 2 498 960,00 Euro
Cordis data

Original description

Evolutionary success drives continuous human adaptation. A pervasive challenge is the substantial change in the composition and nutritional value of diets available. This is particularly relevant for child-bearing women because metabolic bias through diet composition can adversely affects pregnancy outcomes. Even though clinical and experimental studies correlate maternal obesity during pregnancy (affecting ~30% world-wide) with congenital metabolic illnesses, a causal relationship between maternal obesity, impairment in neuroendocrine development and ensuing deficits in metabolic control of affected offspring is as yet missing. The hypothalamus is the neuroendocrine interface linking the brain and periphery. Thus, we hypothesize that maternal obesity could evoke permanent molecular changes in hypothalamic neurons of the offspring to compromise their plasticity and adaptive repertoire. This notion is on the backdrop of our recent success in defining, by singe-cell RNA-seq and brain-wide imaging, the developmental trajectory of neurons that build the mammalian hypothalamus, and in discovering the function of novel neuronal subtypes. Here, we will determine molecular, cellular and network-level changes in the hypothalamus of offspring born to obese mothers. We will combine single-cell RNA-seq and ATAC-seq in the same neurons to precisely catalogue permanent modifications to gene expression at successive developmental stages in mice. We will particularly interrogate molecular determinants that can impair the neuronal circuitry controlling food intake, including leptin and endocannabinoid interplay as a candidate. We will complement these data by identifying novel cellular sites of hormone secretion that shape brain and bodily architecture and are sensitive to maternal obesity. Overall, our work will produce new understanding of the life-long consequences of metabolic programming of the developing brain.

Status

SIGNED

Call topic

ERC-2020-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-ADG ERC ADVANCED GRANT