Summary
Infant acute myeloid leukemia (AML) has a dismal prognosis, with a high prevalence of unfavorable features and increased susceptibility to therapy-related toxicities, highlighting the need for innovative treatment approaches. Despite the discovery of an enormous number and diversity of transcriptional products arising from the previously presumed wastelands of the non-protein-coding genome, our knowledge of non-coding RNAs is far from being incorporated into standards of AML diagnosis and treatment. I hypothesize that the highly developmental stage- and cell-specific expression of long non-coding RNAs shapes a chromatin and transcriptional landscape in fetal hematopoietic stem cells that renders them permissive towards transformation. I predict this landscape to synergize with particular oncogenes that are otherwise not oncogenic in adult cells, by providing a fertile transcriptional background for establishing and maintaining oncogenic programs. Therefore, the non-coding transcriptome, inherited from the fetal cell of origin, may reflect a previously unrecognized Achilles heel of infant AML, which I will identify with my expertise to understand and edit the AML genome and transcriptome.
I will apply recent breakthroughs from various research areas to i) create a comprehensive transcriptomic atlas of infant AML and fetal stem cells, ii) define aberrant or fetal stage-specific non-coding RNAs that drive leukemia progression, and iii) resolve their features to probe the oncogenic interactome. After iv) establishing a biobank of patient-derived xenografts, I will v) evaluate preclinical RNA-centered therapeutic interventions to overcome current obstacles in the treatment of infant AML. Targeting the vulnerable fetal stage-specific background of infant AML inherited from the cell of origin may set a paradigm shift for cancer treatment, by focusing on the permissive basis required by the oncogene for inducing and sustaining cancer, rather than on the oncogene itself.
I will apply recent breakthroughs from various research areas to i) create a comprehensive transcriptomic atlas of infant AML and fetal stem cells, ii) define aberrant or fetal stage-specific non-coding RNAs that drive leukemia progression, and iii) resolve their features to probe the oncogenic interactome. After iv) establishing a biobank of patient-derived xenografts, I will v) evaluate preclinical RNA-centered therapeutic interventions to overcome current obstacles in the treatment of infant AML. Targeting the vulnerable fetal stage-specific background of infant AML inherited from the cell of origin may set a paradigm shift for cancer treatment, by focusing on the permissive basis required by the oncogene for inducing and sustaining cancer, rather than on the oncogene itself.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/714226 |
Start date: | 01-06-2017 |
End date: | 30-06-2023 |
Total budget - Public funding: | 1 499 750,00 Euro - 1 499 750,00 Euro |
Cordis data
Original description
Infant acute myeloid leukemia (AML) has a dismal prognosis, with a high prevalence of unfavorable features and increased susceptibility to therapy-related toxicities, highlighting the need for innovative treatment approaches. Despite the discovery of an enormous number and diversity of transcriptional products arising from the previously presumed wastelands of the non-protein-coding genome, our knowledge of non-coding RNAs is far from being incorporated into standards of AML diagnosis and treatment. I hypothesize that the highly developmental stage- and cell-specific expression of long non-coding RNAs shapes a chromatin and transcriptional landscape in fetal hematopoietic stem cells that renders them permissive towards transformation. I predict this landscape to synergize with particular oncogenes that are otherwise not oncogenic in adult cells, by providing a fertile transcriptional background for establishing and maintaining oncogenic programs. Therefore, the non-coding transcriptome, inherited from the fetal cell of origin, may reflect a previously unrecognized Achilles heel of infant AML, which I will identify with my expertise to understand and edit the AML genome and transcriptome.I will apply recent breakthroughs from various research areas to i) create a comprehensive transcriptomic atlas of infant AML and fetal stem cells, ii) define aberrant or fetal stage-specific non-coding RNAs that drive leukemia progression, and iii) resolve their features to probe the oncogenic interactome. After iv) establishing a biobank of patient-derived xenografts, I will v) evaluate preclinical RNA-centered therapeutic interventions to overcome current obstacles in the treatment of infant AML. Targeting the vulnerable fetal stage-specific background of infant AML inherited from the cell of origin may set a paradigm shift for cancer treatment, by focusing on the permissive basis required by the oncogene for inducing and sustaining cancer, rather than on the oncogene itself.
Status
CLOSEDCall topic
ERC-2016-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)