BUBBLE CURE | Targeted microbubble vibrations to accurately diagnose and treat cardiac device-related bacterial biofilm infections

Summary
Due to an aging population, increasingly more cardiac devices are implanted (pacemaker/ICD/CRT/ prosthetic valve/LVAD; worldwide ~2 million yearly). Life-threatening bacterial infections (1-60% infection and 29-50% mortality rate) associated with these devices are a major healthcare burden and pose scientific challenges. Ultrasound imaging is currently the primary diagnostic modality. However, it lacks specificity and sensitivity because the signal from the bacteria is similar to the signal of healthy tissue or the cardiac device, thus making accurate diagnosis impossible. Recent developments in targeted ultrasound contrast agents (i.e. targeted microbubbles (tMB), 1-8 micron in size) allow ultrasound imaging of a specific tMB vibration signal resulting in exceptional sensitivity and specificity. Advancing tMB imaging to detect bacterial infections is needed to solve the challenges caused by the complex ultrasound field from these devices. I was the first to show that vibrating tMB induce vascular drug uptake, thereby showing the potential of tMB as a theranostic agent by combining imaging with drug delivery. Recently, my team and I were also the first to demonstrate which tMB vibrations kill vessel wall cells in vitro by developing analysis methods that link tMB vibrations to drug uptake patterns on a single cell layer. As this is the first time this technique will be applied to 3D bacterial biofilm infections on cardiac devices, I will go beyond the state-of-the-art in tMB-tissue interaction technology by developing novel detection, analysis, and modeling methods to accurately determine which tMB vibrations eradicate bacterial biofilm infections on devices.
The Bubble Cure project will result in a novel multidisciplinary technology that allows accurate diagnosis and treatment of cardiac device-related bacterial biofilm infections, thereby creating a whole new direction of tMB ultrasound imaging and therapy in the scientific field of cardiology and microbiology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/805308
Start date: 01-01-2019
End date: 30-06-2025
Total budget - Public funding: 1 878 000,00 Euro - 1 878 000,00 Euro
Cordis data

Original description

Due to an aging population, increasingly more cardiac devices are implanted (pacemaker/ICD/CRT/ prosthetic valve/LVAD; worldwide ~2 million yearly). Life-threatening bacterial infections (1-60% infection and 29-50% mortality rate) associated with these devices are a major healthcare burden and pose scientific challenges. Ultrasound imaging is currently the primary diagnostic modality. However, it lacks specificity and sensitivity because the signal from the bacteria is similar to the signal of healthy tissue or the cardiac device, thus making accurate diagnosis impossible. Recent developments in targeted ultrasound contrast agents (i.e. targeted microbubbles (tMB), 1-8 micron in size) allow ultrasound imaging of a specific tMB vibration signal resulting in exceptional sensitivity and specificity. Advancing tMB imaging to detect bacterial infections is needed to solve the challenges caused by the complex ultrasound field from these devices. I was the first to show that vibrating tMB induce vascular drug uptake, thereby showing the potential of tMB as a theranostic agent by combining imaging with drug delivery. Recently, my team and I were also the first to demonstrate which tMB vibrations kill vessel wall cells in vitro by developing analysis methods that link tMB vibrations to drug uptake patterns on a single cell layer. As this is the first time this technique will be applied to 3D bacterial biofilm infections on cardiac devices, I will go beyond the state-of-the-art in tMB-tissue interaction technology by developing novel detection, analysis, and modeling methods to accurately determine which tMB vibrations eradicate bacterial biofilm infections on devices.
The Bubble Cure project will result in a novel multidisciplinary technology that allows accurate diagnosis and treatment of cardiac device-related bacterial biofilm infections, thereby creating a whole new direction of tMB ultrasound imaging and therapy in the scientific field of cardiology and microbiology.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG