N-Supercap | On-chip efficient storage of electrical energy with negative super-capacitance in 2D material systems

Summary
We propose the combination of two performance boosters: (i) negative capacitance principle, exploiting ferroelectricity in doped high-k dielectrics, as developed and validated in 2D devices of our ERC Advanced grant Millitech, and, (ii) 2D graphene electrodes to enhance the performance of supercapacitors in on-chip 2D material systems, in an innovative device called N-supercap. While negative capacitance was until now explored mainly for digital and analog low power electronics, we propose to exploit NC in ferroelectric/dielectric/2D capacitors for on-chip energy storage to support autonomous sensory nodes. This will result in a versatile energy storage systems for IoT Edge AI systems, to enable a large scale deployment in tens of billions without maintenance costs, in a scalable and eco-friendly technology. The proposed PoC will serve as first step in the creation of startup that will aim at using such N-supercaps in various IoT node applications in environmental, industrial and healthcare monitoring. We have set a team of experts to exploit this technological breakthrough into the creation of a startup, based on a road to commercialization.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/966786
Start date: 01-03-2021
End date: 31-05-2023
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

We propose the combination of two performance boosters: (i) negative capacitance principle, exploiting ferroelectricity in doped high-k dielectrics, as developed and validated in 2D devices of our ERC Advanced grant Millitech, and, (ii) 2D graphene electrodes to enhance the performance of supercapacitors in on-chip 2D material systems, in an innovative device called N-supercap. While negative capacitance was until now explored mainly for digital and analog low power electronics, we propose to exploit NC in ferroelectric/dielectric/2D capacitors for on-chip energy storage to support autonomous sensory nodes. This will result in a versatile energy storage systems for IoT Edge AI systems, to enable a large scale deployment in tens of billions without maintenance costs, in a scalable and eco-friendly technology. The proposed PoC will serve as first step in the creation of startup that will aim at using such N-supercaps in various IoT node applications in environmental, industrial and healthcare monitoring. We have set a team of experts to exploit this technological breakthrough into the creation of a startup, based on a road to commercialization.

Status

CLOSED

Call topic

ERC-2020-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-PoC