EMPOWER | Medium Voltage Direct Current Electronic Transformer

Summary
More than a century ago, the invention of alternating current (AC) transformer has made AC the preferred choice over the direct current (DC) technologies. Line AC transformers are bulky but simple and reliable devices, made out of copper and iron, providing voltage adaptation and galvanic isolation in AC power systems.

Currently, DC technology is increasing its presence in AC power systems, enabled by progress in semiconductor devices and power electronics based energy conversion. DC power distribution networks can effectively support energy transformation and high penetration of distributed energy resources and energy storage integration (both increasingly being DC by nature) in future energy systems. Despite this shift towards the DC power distribution networks, DC Transformer, offering AC transformer like features (and beyond) does not exist, either conceptually or practically.

To enable the next (r)evolution in power systems, the EMPOWER project will develop the DC Transformer, a novel, flexible, highly efficient, compact, and reliable conversion principle for seamless energy routing in high-power DC distribution networks. Through a holistic approach, novel concepts, integration and optimization, we will demonstrate new design paradigms for galvanically-isolated power conversion. Our approach relies on resonant conversion utilizing high-voltage semiconductor devices in combination with high-frequency magnetic materials. We propose a new approach for the DC Transformer, avoiding active power flow control and instead utilizing control effort for the safety and protection. The DC Transformer will unify functions of a power converter and a protection device into a single power electronics system, improving drastically the conversion efficiency, reliability and power density in future DC power distribution networks. The success of this project will place Europe at the edge of reliable, efficient and safe energy distribution and transmission technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/818706
Start date: 01-06-2019
End date: 31-05-2024
Total budget - Public funding: 2 198 145,00 Euro - 2 198 145,00 Euro
Cordis data

Original description

More than a century ago, the invention of alternating current (AC) transformer has made AC the preferred choice over the direct current (DC) technologies. Line AC transformers are bulky but simple and reliable devices, made out of copper and iron, providing voltage adaptation and galvanic isolation in AC power systems.

Currently, DC technology is increasing its presence in AC power systems, enabled by progress in semiconductor devices and power electronics based energy conversion. DC power distribution networks can effectively support energy transformation and high penetration of distributed energy resources and energy storage integration (both increasingly being DC by nature) in future energy systems. Despite this shift towards the DC power distribution networks, DC Transformer, offering AC transformer like features (and beyond) does not exist, either conceptually or practically.

To enable the next (r)evolution in power systems, the EMPOWER project will develop the DC Transformer, a novel, flexible, highly efficient, compact, and reliable conversion principle for seamless energy routing in high-power DC distribution networks. Through a holistic approach, novel concepts, integration and optimization, we will demonstrate new design paradigms for galvanically-isolated power conversion. Our approach relies on resonant conversion utilizing high-voltage semiconductor devices in combination with high-frequency magnetic materials. We propose a new approach for the DC Transformer, avoiding active power flow control and instead utilizing control effort for the safety and protection. The DC Transformer will unify functions of a power converter and a protection device into a single power electronics system, improving drastically the conversion efficiency, reliability and power density in future DC power distribution networks. The success of this project will place Europe at the edge of reliable, efficient and safe energy distribution and transmission technologies.

Status

SIGNED

Call topic

ERC-2018-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-COG