2D-Liquid | 2D material interactions with liquids probed with nanoscopy tools

Summary
In this project, we will introduce a myriad of nanoscopy techniques to investigate the liquid-solid interactions taking advantage of either engineered defects or defects already hosted in 2D materials. We will address the pertinent question on the mechanism of reactivity of 2D materials with aqueous electrolytes at ambient conditions and the role of the defects on the dynamics of interfacial charges. At the start of the project, we will explore defects hosted in two classes of 2D materials: hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDs). Our plans are to define strategies to extend defect imaging combined with other characterization approaches to a multitude of 2D materials. In parallel, we will explore the role of interfacial liquid taking advantage of novel nanofluidic platforms termed angstrom slits that will allow fine-tuning the balance between 2D and 3D liquid. To control defect density in 2D materials, we will use approaches based on focused ion beam irradiation with Xenon and Helium ions
We will adapt and develop different nanoscopy tools such as single-molecule localization microscopy (SMLM), single-particle tracking, Point Accumulation for Imaging in Nanoscale Topography (PAINT) Minimal Emission Fluxes Microscopy MINFLUX and Scanning Ion Conductance Microscopy (SICM). All nanoscopy modalities used in 2D-LIQUID project can operate in –situ under ambient conditions and are compatible with the probing of defect chemistry, charge dynamics in different pH environments, and under different solvents or solvent mixtures. We believe that obtained insights regarding the role of defects in dynamics of the surface charges will shed light on the water and ion transport through nanopores, nanotubes but also ultimately narrow angstrom. Our findings will propel the development of nanofluidics, biosensing, energy harvesting, molecular separation and other nanoscale technologies that exploit liquid 2D-material interfaces.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101020445
Start date: 01-10-2021
End date: 30-09-2026
Total budget - Public funding: 3 499 845,00 Euro - 3 499 845,00 Euro
Cordis data

Original description

In this project, we will introduce a myriad of nanoscopy techniques to investigate the liquid-solid interactions taking advantage of either engineered defects or defects already hosted in 2D materials. We will address the pertinent question on the mechanism of reactivity of 2D materials with aqueous electrolytes at ambient conditions and the role of the defects on the dynamics of interfacial charges. At the start of the project, we will explore defects hosted in two classes of 2D materials: hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDs). Our plans are to define strategies to extend defect imaging combined with other characterization approaches to a multitude of 2D materials. In parallel, we will explore the role of interfacial liquid taking advantage of novel nanofluidic platforms termed angstrom slits that will allow fine-tuning the balance between 2D and 3D liquid. To control defect density in 2D materials, we will use approaches based on focused ion beam irradiation with Xenon and Helium ions
We will adapt and develop different nanoscopy tools such as single-molecule localization microscopy (SMLM), single-particle tracking, Point Accumulation for Imaging in Nanoscale Topography (PAINT) Minimal Emission Fluxes Microscopy MINFLUX and Scanning Ion Conductance Microscopy (SICM). All nanoscopy modalities used in 2D-LIQUID project can operate in –situ under ambient conditions and are compatible with the probing of defect chemistry, charge dynamics in different pH environments, and under different solvents or solvent mixtures. We believe that obtained insights regarding the role of defects in dynamics of the surface charges will shed light on the water and ion transport through nanopores, nanotubes but also ultimately narrow angstrom. Our findings will propel the development of nanofluidics, biosensing, energy harvesting, molecular separation and other nanoscale technologies that exploit liquid 2D-material interfaces.

Status

SIGNED

Call topic

ERC-2020-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-ADG ERC ADVANCED GRANT