SUPRAVACC | Supramolecular engineering of glycan-decorated peptides as synthetic vaccines

Summary
The main and most important feature of vaccines is the induction of an immunological memory response, which is key to providing long-term protection against pathogens. The current strategies for potent antibacterial and antiviral vaccines employ conjugation of pathogen specific entities onto carrier proteins, and are limited to formulations that suffer from low stability and short shelf-lives, and are thus not viable in developing countries. Strategies for the development of new vaccinations against endogenous diseases like cancer further remain an unmet challenge, since current methodologies suffer from a lack of a modular and tailored vaccine-specific functionalisation. I therefore propose a radically new design approach in the development of fully synthetic molecular vaccines. My team will synthesise carbohydrate and glycopeptide appended epitopes that are grafted onto supramolecular building blocks. These units can be individually designed to attach disease specific antigens and immunostimulants. Due to their self-assembling properties into nanoscaled pathogen mimetic particles, they serve as a supramolecular subunit vaccine toolbox. By developing a universal supramolecular polymer platform, we will construct multipotent vaccines from glycan-decorated peptides, that combine the activity of protein conjugates with the facile handling, precise composition and increased stability of traditional small molecule pharmaceutical compounds.
SUPRAVACC will pioneer the design of minimalistic and broadly applicable vaccines, and will evaluate the supramolecular engineering approach for immunisations against antibacterial diseases, as well as for applications as antitumour vaccine candidates. The fundamental insights gained will drive a paradigm shift in the design and preparation of vaccine candidates in academic and industrial research laboratories.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/819856
Start date: 01-04-2019
End date: 31-03-2025
Total budget - Public funding: 2 000 000,00 Euro - 2 000 000,00 Euro
Cordis data

Original description

The main and most important feature of vaccines is the induction of an immunological memory response, which is key to providing long-term protection against pathogens. The current strategies for potent antibacterial and antiviral vaccines employ conjugation of pathogen specific entities onto carrier proteins, and are limited to formulations that suffer from low stability and short shelf-lives, and are thus not viable in developing countries. Strategies for the development of new vaccinations against endogenous diseases like cancer further remain an unmet challenge, since current methodologies suffer from a lack of a modular and tailored vaccine-specific functionalisation. I therefore propose a radically new design approach in the development of fully synthetic molecular vaccines. My team will synthesise carbohydrate and glycopeptide appended epitopes that are grafted onto supramolecular building blocks. These units can be individually designed to attach disease specific antigens and immunostimulants. Due to their self-assembling properties into nanoscaled pathogen mimetic particles, they serve as a supramolecular subunit vaccine toolbox. By developing a universal supramolecular polymer platform, we will construct multipotent vaccines from glycan-decorated peptides, that combine the activity of protein conjugates with the facile handling, precise composition and increased stability of traditional small molecule pharmaceutical compounds.
SUPRAVACC will pioneer the design of minimalistic and broadly applicable vaccines, and will evaluate the supramolecular engineering approach for immunisations against antibacterial diseases, as well as for applications as antitumour vaccine candidates. The fundamental insights gained will drive a paradigm shift in the design and preparation of vaccine candidates in academic and industrial research laboratories.

Status

SIGNED

Call topic

ERC-2018-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-COG