FAIME | Flavour Anomalies with advanced particle Identification MEthods

Summary
In the proposed research, precision measurements of rare processes involving heavy quarks and leptons will be used to search for new phenomena beyond the Standard Model, popularly known as New Physics. This research at the intensity frontier is complementary to searches at the highest achievable energies carried out at the LHC proton-proton collider. Indications of very interesting discrepancies have recently been observed by three experiments (LHCb, BaBar, and Belle) between their results and predictions of the Standard Model in certain classes of decays of B mesons, which involve leptons in the final state. The proposed project will address these issues by using large event samples collected with the Belle II detector at a new electron-positron collider, SuperKEKB. By investigating a broad range of selected rare decays of B and D, the project will attempt to provide a definite answer on the violation of Lepton Flavour Universality, one of the cornerstones of our current understanding of the interactions among the elementary particles. Based on the results of these studies, the final stages of the project will be devoted to possible explanations and to studies of transitions that would be based on related new physics phenomena.

Within the proposed research programme, novel, highly advanced identification methods for charged particles will also be developed. They will be of crucial importance to suppress backgrounds arising from other, much more abundant decays in measurements of rare processes where the sensitivity to a possible contribution of New Physics is largest. The proposed research will strongly benefit from the fact that the same group that contributed substantially to the physics programme, concept, design, and construction of the detector, will also carry out the development of novel analysis methods, their calibration and optimization for individual reactions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/884719
Start date: 01-10-2020
End date: 30-09-2025
Total budget - Public funding: 2 732 275,00 Euro - 2 446 810,00 Euro
Cordis data

Original description

In the proposed research, precision measurements of rare processes involving heavy quarks and leptons will be used to search for new phenomena beyond the Standard Model, popularly known as New Physics. This research at the intensity frontier is complementary to searches at the highest achievable energies carried out at the LHC proton-proton collider. Indications of very interesting discrepancies have recently been observed by three experiments (LHCb, BaBar, and Belle) between their results and predictions of the Standard Model in certain classes of decays of B mesons, which involve leptons in the final state. The proposed project will address these issues by using large event samples collected with the Belle II detector at a new electron-positron collider, SuperKEKB. By investigating a broad range of selected rare decays of B and D, the project will attempt to provide a definite answer on the violation of Lepton Flavour Universality, one of the cornerstones of our current understanding of the interactions among the elementary particles. Based on the results of these studies, the final stages of the project will be devoted to possible explanations and to studies of transitions that would be based on related new physics phenomena.

Within the proposed research programme, novel, highly advanced identification methods for charged particles will also be developed. They will be of crucial importance to suppress backgrounds arising from other, much more abundant decays in measurements of rare processes where the sensitivity to a possible contribution of New Physics is largest. The proposed research will strongly benefit from the fact that the same group that contributed substantially to the physics programme, concept, design, and construction of the detector, will also carry out the development of novel analysis methods, their calibration and optimization for individual reactions.

Status

SIGNED

Call topic

ERC-2019-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2019-ADG