Summary
Understanding molecular organization and dynamics which are governed by electrostatic and electrodynamics interactions on the nanoscale requires the measurement of dielectric polarization at the molecular level. Yet, this has remained a formidable challenge because standard dielectric spectroscopy is limited to the micrometer scale that is achieved by using microfabricated electrodes at low frequencies and optical approaches at high frequencies. At the same time, despite the advances in atomistic calculations, theorists struggle to predict dielectric polarization when the system approaches molecular sizes. During the last years I pioneered the development of scanning dielectric microscopy, measuring the dielectric constants of nano-objects as small as tens of nanometers in size - a resolution unparalleled world-wide. In the next five years, I will push the boundaries of the technique and probe the polarizability of liquids and biological macromolecules under two-dimensional (2D) confinement by implementing novel experimental and theoretical approaches. By engineering 2D liquid cells with controlled properties by van der Waals assembly, I will probe polarization and thermodynamic properties of nanoconfined molecular liquids for the first time on the molecular scale with fundamental implications for physical and life sciences. It will provide the experimental data to validate first-principles predictions and mean-field computational methods on which the study of condensed/soft matter and molecular biology is based. The proposal will exploit my current lead to access a key physical property of matter that has remained unknown so far, enabling a wealth of new science in a vast range of research fields, from physical sciences to chemistry and biology, and facilitating the design of devices with novel functionalities.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/819417 |
Start date: | 01-10-2019 |
End date: | 30-09-2025 |
Total budget - Public funding: | 1 998 829,00 Euro - 1 998 829,00 Euro |
Cordis data
Original description
Understanding molecular organization and dynamics which are governed by electrostatic and electrodynamics interactions on the nanoscale requires the measurement of dielectric polarization at the molecular level. Yet, this has remained a formidable challenge because standard dielectric spectroscopy is limited to the micrometer scale that is achieved by using microfabricated electrodes at low frequencies and optical approaches at high frequencies. At the same time, despite the advances in atomistic calculations, theorists struggle to predict dielectric polarization when the system approaches molecular sizes. During the last years I pioneered the development of scanning dielectric microscopy, measuring the dielectric constants of nano-objects as small as tens of nanometers in size - a resolution unparalleled world-wide. In the next five years, I will push the boundaries of the technique and probe the polarizability of liquids and biological macromolecules under two-dimensional (2D) confinement by implementing novel experimental and theoretical approaches. By engineering 2D liquid cells with controlled properties by van der Waals assembly, I will probe polarization and thermodynamic properties of nanoconfined molecular liquids for the first time on the molecular scale with fundamental implications for physical and life sciences. It will provide the experimental data to validate first-principles predictions and mean-field computational methods on which the study of condensed/soft matter and molecular biology is based. The proposal will exploit my current lead to access a key physical property of matter that has remained unknown so far, enabling a wealth of new science in a vast range of research fields, from physical sciences to chemistry and biology, and facilitating the design of devices with novel functionalities.Status
SIGNEDCall topic
ERC-2018-COGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)