F-ELEMENT_ARCHITECT | Building Precise Molecular Architectures to Unlock Remarkable f-Element Properties

Summary
The astonishing properties of the f-elements have been exploited in numerous consumer technologies, despite their fundamental chemistry being poorly developed. It is now crucial to address this issue to provide the necessary insights to develop future applications. Design criteria exist to build f-element complexes with maximised physical attributes. This adventurous proposal targets the synthesis and thorough analysis of two complementary molecular f-element architectures that 1) optimise magnetic properties and 2) stabilise unusual oxidation states.

In Part 1, we target highly axial f-element complexes that lack equatorial ligand interactions. These molecules can exhibit maximised single-molecule magnet properties, including magnetic hysteresis, a memory effect and as a prerequisite of data storage, at liquid nitrogen temperatures. This is the necessary first step towards achieving high-density molecular data storage without expensive liquid helium cooling and future commercial applications.

In Part 2, we target trigonal f-element complexes that lack axial ligand interactions. These are optimal ligand fields for the stabilisation of low oxidation states, thus we aim for rare lanthanide/actinide(II) and unprecedented lanthanide/actinide(I) complexes. These compounds are ideal candidates for unique measurements of covalency by pulsed electron paramagnetic resonance spectroscopy, which will provide textbook data that can be transferable to nuclear fuel cycles.

An ERC CoG will provide the necessary resources to build a world-leading research team that will deliver landmark synthetic results and fresh insights into f-element electronic structure, whilst opening up new chemical space for future exploitation. These findings will underpin current technologies and will facilitate the discovery of future applications, supporting key Horizon 2020 priority areas including the Flagship on Quantum Technologies, and enhancing the scientific reputation and economy of the EU.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/816268
Start date: 01-09-2019
End date: 31-05-2025
Total budget - Public funding: 1 990 800,93 Euro - 1 990 800,00 Euro
Cordis data

Original description

The astonishing properties of the f-elements have been exploited in numerous consumer technologies, despite their fundamental chemistry being poorly developed. It is now crucial to address this issue to provide the necessary insights to develop future applications. Design criteria exist to build f-element complexes with maximised physical attributes. This adventurous proposal targets the synthesis and thorough analysis of two complementary molecular f-element architectures that 1) optimise magnetic properties and 2) stabilise unusual oxidation states.

In Part 1, we target highly axial f-element complexes that lack equatorial ligand interactions. These molecules can exhibit maximised single-molecule magnet properties, including magnetic hysteresis, a memory effect and as a prerequisite of data storage, at liquid nitrogen temperatures. This is the necessary first step towards achieving high-density molecular data storage without expensive liquid helium cooling and future commercial applications.

In Part 2, we target trigonal f-element complexes that lack axial ligand interactions. These are optimal ligand fields for the stabilisation of low oxidation states, thus we aim for rare lanthanide/actinide(II) and unprecedented lanthanide/actinide(I) complexes. These compounds are ideal candidates for unique measurements of covalency by pulsed electron paramagnetic resonance spectroscopy, which will provide textbook data that can be transferable to nuclear fuel cycles.

An ERC CoG will provide the necessary resources to build a world-leading research team that will deliver landmark synthetic results and fresh insights into f-element electronic structure, whilst opening up new chemical space for future exploitation. These findings will underpin current technologies and will facilitate the discovery of future applications, supporting key Horizon 2020 priority areas including the Flagship on Quantum Technologies, and enhancing the scientific reputation and economy of the EU.

Status

SIGNED

Call topic

ERC-2018-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-COG