SmartGraphene | Graphene based smart surfaces: from visible to microwave

Summary
The aim of this proposal is to develop adaptive camouflage systems using graphene-enabled smart surfaces. We propose a new class of active surfaces capable of real-time electrical-control of its appearance in a very broad spectrum ranging from visible to microwave covering 6 orders of magnitude in wavelength. The proposed method relies on controlling electromagnetic waves by tuning density of high-mobility charges on single or multilayers of atomically thin graphene electrodes. We will realize this goal by efficient gating of large-area graphene using ionic liquids which yields unprecedented ability to control intensity and phase of the reflected and transmitted electromagnetic waves from the surface. Based on underlying physical mechanisms and applications, the proposed research plan is structured in 3 main directions; (1) Active surfaces in microwave and THz, (2) Active thermal surfaces, and (3) Active surfaces in the visible.

The core idea of the proposal is based on a mutually-gated capacitor structure consisting of ionic liquid electrolyte sandwiched between two large area graphene. The voltage applied between the electrodes polarizes the ionic liquid and accumulates high-density of charges. Combining large scale chemical synthesis of graphene, novel device architectures and ionic liquid electrolyte we will develop new tools to understand and control light-matter interaction in a very broad spectrum. Then we will use these tools to fabricate new camouflage and display technologies on flexible polymers and paper substrates which cannot be realized by conventional semiconducting materials. We will challenge specific applications, such as THz compressive imaging, reconfigurable thermal shields, and electronic paper display.

At the basic science level, this project revisits and challenges our basic understanding of light-matter interaction, in parallel, the proposed graphene-based smart surfaces will serve as a tool for developing new enabling technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/682723
Start date: 01-05-2016
End date: 30-04-2022
Total budget - Public funding: 1 995 625,00 Euro - 1 995 625,00 Euro
Cordis data

Original description

The aim of this proposal is to develop adaptive camouflage systems using graphene-enabled smart surfaces. We propose a new class of active surfaces capable of real-time electrical-control of its appearance in a very broad spectrum ranging from visible to microwave covering 6 orders of magnitude in wavelength. The proposed method relies on controlling electromagnetic waves by tuning density of high-mobility charges on single or multilayers of atomically thin graphene electrodes. We will realize this goal by efficient gating of large-area graphene using ionic liquids which yields unprecedented ability to control intensity and phase of the reflected and transmitted electromagnetic waves from the surface. Based on underlying physical mechanisms and applications, the proposed research plan is structured in 3 main directions; (1) Active surfaces in microwave and THz, (2) Active thermal surfaces, and (3) Active surfaces in the visible.

The core idea of the proposal is based on a mutually-gated capacitor structure consisting of ionic liquid electrolyte sandwiched between two large area graphene. The voltage applied between the electrodes polarizes the ionic liquid and accumulates high-density of charges. Combining large scale chemical synthesis of graphene, novel device architectures and ionic liquid electrolyte we will develop new tools to understand and control light-matter interaction in a very broad spectrum. Then we will use these tools to fabricate new camouflage and display technologies on flexible polymers and paper substrates which cannot be realized by conventional semiconducting materials. We will challenge specific applications, such as THz compressive imaging, reconfigurable thermal shields, and electronic paper display.

At the basic science level, this project revisits and challenges our basic understanding of light-matter interaction, in parallel, the proposed graphene-based smart surfaces will serve as a tool for developing new enabling technologies.

Status

SIGNED

Call topic

ERC-CoG-2015

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2015
ERC-2015-CoG
ERC-CoG-2015 ERC Consolidator Grant