3D Cer-Met | 3D Thin-Walled Ceramic and Ceramic-Metal Components using Electrolytic Plasma Processing

Summary
This proposal relates to the Proof of Concept stage investigation of exciting new findings in the ERC Advanced Grant ‘IMPUNEP’ project relating to the study and use of plasma-based processes. These findings offer significant advantages for the creation of complex 3D ceramic and ceramic-metal products at relatively low cost in an environmentally friendly manner. The potential applications of this new technology are very wide-ranging, and include the creation of new products as diverse as healthcare devices, MEMS and aero/automotive parts. Before we properly and fully identify the most promising applications, we need to investigate key aspects of the performance of materials created by this new method. This aspect wasn’t envisaged in the original proposal and involves research into the mechanical properties (especially the strength and elastic modulus) of these 3D parts and their response to deformation and dynamic displacements, as well as their physical (including electrical) properties. These components will be highly resistant to attack by aggressive (e.g. acidic) media as well as highly tolerant to both low (cryogenic) and high (combustion) temperatures. The expected applications opened up by this new method to produce ceramic and ceramic-metal components of complex shape are extensive. Hence the need for this Proof of Concept study, which will focus on validating the process for 3D ceramic-metal and ceramic parts and evaluating the mechanical, chemical, electrical and physical attributes of the 3D shapes, and will explore their potential applications in this pre-demonstration phase.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/825122
Start date: 01-01-2019
End date: 31-03-2020
Total budget - Public funding: 149 500,00 Euro - 149 500,00 Euro
Cordis data

Original description

This proposal relates to the Proof of Concept stage investigation of exciting new findings in the ERC Advanced Grant ‘IMPUNEP’ project relating to the study and use of plasma-based processes. These findings offer significant advantages for the creation of complex 3D ceramic and ceramic-metal products at relatively low cost in an environmentally friendly manner. The potential applications of this new technology are very wide-ranging, and include the creation of new products as diverse as healthcare devices, MEMS and aero/automotive parts. Before we properly and fully identify the most promising applications, we need to investigate key aspects of the performance of materials created by this new method. This aspect wasn’t envisaged in the original proposal and involves research into the mechanical properties (especially the strength and elastic modulus) of these 3D parts and their response to deformation and dynamic displacements, as well as their physical (including electrical) properties. These components will be highly resistant to attack by aggressive (e.g. acidic) media as well as highly tolerant to both low (cryogenic) and high (combustion) temperatures. The expected applications opened up by this new method to produce ceramic and ceramic-metal components of complex shape are extensive. Hence the need for this Proof of Concept study, which will focus on validating the process for 3D ceramic-metal and ceramic parts and evaluating the mechanical, chemical, electrical and physical attributes of the 3D shapes, and will explore their potential applications in this pre-demonstration phase.

Status

CLOSED

Call topic

ERC-2018-PoC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-PoC