SCIFY | Self-Calibrated Interferometry for Exoplanet Spectroscopy

Summary
The spectral characterisation and understanding of terrestrial exoplanets is currently one of the most ambitious and challenging long-term goals of astrophysics. All observing techniques with the potential to tackle this challenge face the same limitations: the overwhelmingly dominant flux of the host star and/or the lack of angular resolution. A very promising technical solution around these issues is nulling interferometry, which combines the advantages of stellar interferometry (high angular resolution) and coronagraphy (starlight rejection). For several years, we have been developing both data acquisition and data processing techniques based on self-calibration of the interferometric observable and demonstrated record-breaking starlight rejection on two American ground-based facilities. With the SCIFY project, I propose to prototype the first nulling interferometric instrument for the European Very Large Telescope Interferometer. By leveraging its state-of-the-art infrastructure, long baselines, and strategic position in the Southern hemisphere, the new VLTI instrument will be able to carry out several high-impact exoplanet programmes to characterise the chemical composition of Jupiter-like exoplanets at the most relevant angular separations (i.e., close to the snow line) and better understand how planets form and evolve. To achieve these goals, we will demonstrate a new observing technique called spectral self-calibration, combining nulling interferometry with high-dispersion spectroscopy, and adapt our advanced post-processing techniques to the VLTI. This will provide a new and more robust open-source general-purpose interferometric data reduction tool to the VLTI community. In the long term, the SCIFY project will be a cornerstone in the roadmap leading to the characterisation of terrestrial exoplanets and the search for life beyond Earth.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/866070
Start date: 01-10-2020
End date: 30-09-2025
Total budget - Public funding: 2 430 202,00 Euro - 2 430 202,00 Euro
Cordis data

Original description

The spectral characterisation and understanding of terrestrial exoplanets is currently one of the most ambitious and challenging long-term goals of astrophysics. All observing techniques with the potential to tackle this challenge face the same limitations: the overwhelmingly dominant flux of the host star and/or the lack of angular resolution. A very promising technical solution around these issues is nulling interferometry, which combines the advantages of stellar interferometry (high angular resolution) and coronagraphy (starlight rejection). For several years, we have been developing both data acquisition and data processing techniques based on self-calibration of the interferometric observable and demonstrated record-breaking starlight rejection on two American ground-based facilities. With the SCIFY project, I propose to prototype the first nulling interferometric instrument for the European Very Large Telescope Interferometer. By leveraging its state-of-the-art infrastructure, long baselines, and strategic position in the Southern hemisphere, the new VLTI instrument will be able to carry out several high-impact exoplanet programmes to characterise the chemical composition of Jupiter-like exoplanets at the most relevant angular separations (i.e., close to the snow line) and better understand how planets form and evolve. To achieve these goals, we will demonstrate a new observing technique called spectral self-calibration, combining nulling interferometry with high-dispersion spectroscopy, and adapt our advanced post-processing techniques to the VLTI. This will provide a new and more robust open-source general-purpose interferometric data reduction tool to the VLTI community. In the long term, the SCIFY project will be a cornerstone in the roadmap leading to the characterisation of terrestrial exoplanets and the search for life beyond Earth.

Status

SIGNED

Call topic

ERC-2019-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-COG