HyperQC | Hyper Quantum Criticality

Summary
Hyper Quantum Criticality – HyperQC is a major initiative with the aim of generating and controlling novel phases of correlated magnetic quantum matter, and of exploring them in high-precision experiments. A combination of new capabilities enabled by the development of instrumentation, pioneering ultra-fast studies and experiments on magnetic model materials will allow both the exploration of fundamental Hamiltonians and fully quantitative tests of quantum criticality in hyper-parameter space: temperature, magnetic field, pressure, energy, momentum and time.

HyperQC - Challenge. Direct control of the dimensionality, symmetry, chemical potential and interactions in magnetic materials is achieved by a new experimental set-up combining high magnetic fields and pressures with ultra-low temperatures, which will be installed on neutron scattering instruments at the Swiss Spallation Neutron Source SINQ. Experiments on a number of magnetic model materials allow the realization and high-precision measurements of the multi-dimensional quantum critical properties of systems including magnon Bose-Einstein Condensates, spin Luttinger liquids and renormalized classical ordered phases, as well as of other many-body phenomena in quantum spin systems.

HyperQC – Vision. Experiments on the time-dependent, non-equilibrium properties of quantum magnets and quantum critical points are new. Ultra-short laser and X-ray pulses are able to alter and measure the lattice, spin, orbital and electronic properties of solids, which has been demonstrated in recent experiments on multiferroic materials and superconductors. The effects of such pulses on a number of well-characterized model quantum magnets will be investigated with the aim of studying the time-dependent dynamics of quantum critical systems for the first time.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/681654
Start date: 01-12-2016
End date: 30-11-2021
Total budget - Public funding: 2 328 648,75 Euro - 2 328 648,00 Euro
Cordis data

Original description

Hyper Quantum Criticality – HyperQC is a major initiative with the aim of generating and controlling novel phases of correlated magnetic quantum matter, and of exploring them in high-precision experiments. A combination of new capabilities enabled by the development of instrumentation, pioneering ultra-fast studies and experiments on magnetic model materials will allow both the exploration of fundamental Hamiltonians and fully quantitative tests of quantum criticality in hyper-parameter space: temperature, magnetic field, pressure, energy, momentum and time.

HyperQC - Challenge. Direct control of the dimensionality, symmetry, chemical potential and interactions in magnetic materials is achieved by a new experimental set-up combining high magnetic fields and pressures with ultra-low temperatures, which will be installed on neutron scattering instruments at the Swiss Spallation Neutron Source SINQ. Experiments on a number of magnetic model materials allow the realization and high-precision measurements of the multi-dimensional quantum critical properties of systems including magnon Bose-Einstein Condensates, spin Luttinger liquids and renormalized classical ordered phases, as well as of other many-body phenomena in quantum spin systems.

HyperQC – Vision. Experiments on the time-dependent, non-equilibrium properties of quantum magnets and quantum critical points are new. Ultra-short laser and X-ray pulses are able to alter and measure the lattice, spin, orbital and electronic properties of solids, which has been demonstrated in recent experiments on multiferroic materials and superconductors. The effects of such pulses on a number of well-characterized model quantum magnets will be investigated with the aim of studying the time-dependent dynamics of quantum critical systems for the first time.

Status

TERMINATED

Call topic

ERC-CoG-2015

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2015
ERC-2015-CoG
ERC-CoG-2015 ERC Consolidator Grant