BRAINMINT | Brains and minds in transition: The dark side of neuroplasticity during sensitive life phases

Summary
The potential and boundaries of the human mind is determined by dynamic interactions between the environment and the individual genetic architecture. However, despite several breakthroughs, the genetic revolution has not provided a coherent account of the development of the mind and its disorders, and the missing heritability is large across human traits. One explanation of this impasse is the complexity of the gene-environment interactions. Current knowledge about the determinants of a healthy mind is largely based on studies whose modus operandi is to treat the environment as a static entity, neglecting to consider the crucial fact that environmental inputs and their genetic interactions vary dramatically between life phases.

The objective of BRAINMINT is to provide this missing link by zeroing in on two major life transitions, namely adolescence and pregnancy. These phases are characterized by temporarily increased brain plasticity, offering windows for adaptation and growth, but also host the emergence of common mental disorders. I propose that a multi-level investigation with this dark side of brain plasticity as the axis mundi will add a mechanistic understanding of this link between growth and vulnerability. I will test the main hypothesis that mechanisms that boost neuroplasticity promote adaptation to a dynamic environment, but at the cost of increased risk of psychopathology if exposed to a combination of genetic and environmental triggers. To this end I will utilize cutting-edge longitudinal brain imaging, electrophysiology, rich cognitive and clinical data, immune markers, gene expression and genetics. I will leverage on massive imaging data (n>40,000) and novel tools to increase power and generalizability and improve brain- and gene-based predictions of complex traits. Aiming to help resolving one of the modern day enigmas, BRAINMINT is a pioneering and high risk/high gain effort to find mechanisms of brain plasticity that support and harm the brain.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/802998
Start date: 01-08-2019
End date: 31-07-2024
Total budget - Public funding: 1 446 113,00 Euro - 1 446 113,00 Euro
Cordis data

Original description

The potential and boundaries of the human mind is determined by dynamic interactions between the environment and the individual genetic architecture. However, despite several breakthroughs, the genetic revolution has not provided a coherent account of the development of the mind and its disorders, and the missing heritability is large across human traits. One explanation of this impasse is the complexity of the gene-environment interactions. Current knowledge about the determinants of a healthy mind is largely based on studies whose modus operandi is to treat the environment as a static entity, neglecting to consider the crucial fact that environmental inputs and their genetic interactions vary dramatically between life phases.

The objective of BRAINMINT is to provide this missing link by zeroing in on two major life transitions, namely adolescence and pregnancy. These phases are characterized by temporarily increased brain plasticity, offering windows for adaptation and growth, but also host the emergence of common mental disorders. I propose that a multi-level investigation with this dark side of brain plasticity as the axis mundi will add a mechanistic understanding of this link between growth and vulnerability. I will test the main hypothesis that mechanisms that boost neuroplasticity promote adaptation to a dynamic environment, but at the cost of increased risk of psychopathology if exposed to a combination of genetic and environmental triggers. To this end I will utilize cutting-edge longitudinal brain imaging, electrophysiology, rich cognitive and clinical data, immune markers, gene expression and genetics. I will leverage on massive imaging data (n>40,000) and novel tools to increase power and generalizability and improve brain- and gene-based predictions of complex traits. Aiming to help resolving one of the modern day enigmas, BRAINMINT is a pioneering and high risk/high gain effort to find mechanisms of brain plasticity that support and harm the brain.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG