THERA-LEGO | Commercial feasibility of a therapeutic approach to cancer based on ‘LEGO’ antibody recruiting glycodendrimers

Summary
Cancer remains a major cause of mortality worldwide, with projections estimating that 40% of population will be diagnosed with a form of cancer during their lifetime. Despite significant progress in treatment modalities, current therapeutic regimens are still deficient due to intolerable side effects, while stray cancer cells often escape destruction. Immunotherapy-based approaches certainly represent the most promising alternatives in this area although very limited approaches are available. In addition, major issues remain to be addressed such as the lack of efficiency and autoimmune toxicity for a large population of patients. In the ERC Consolidator grant “LEGO”, we have demonstrated that fully synthetic structures with unprecedented combinations have immunological properties against cancers. We have developed a “molecular LEGO” approach to construct Antibody Recruiting Glycodendrimers (ARGs) embedded with key structural parameters and capable of redirecting endogenous antibodies present in the human bloodstream against tumors without preliminary immunization. Among a variety ARGs, we have identified two lead compound that: 1/ recruit natural Abs with a cluster of oligosaccharides; 2/ target cancer receptors with a cluster of peptides; 3/ promote the formation of a ternary complex between natural Abs and cancer cells; 4/ promote up to 60% of cytotoxicity towards cancer cells in vitro. Within THERA-LEGO, we aim to investigate the commercial feasibility and the in vivo properties of our lead compounds (toxicity, stability, biodistribution, pharmacokinetics/dynamics, immunogenicity) in humanized mice models, to facilitate the transfer of the technology to a company and the initiation of clinical development. The work to be done in this project will advance our assets from a Technology Readiness Level (TRL) of 3 to 5 and will enable us to create an exploitation strategy (relying either on commercialization through own spin-off or licensing to a pharma company).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/963862
Start date: 01-01-2021
End date: 30-06-2022
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Cancer remains a major cause of mortality worldwide, with projections estimating that 40% of population will be diagnosed with a form of cancer during their lifetime. Despite significant progress in treatment modalities, current therapeutic regimens are still deficient due to intolerable side effects, while stray cancer cells often escape destruction. Immunotherapy-based approaches certainly represent the most promising alternatives in this area although very limited approaches are available. In addition, major issues remain to be addressed such as the lack of efficiency and autoimmune toxicity for a large population of patients. In the ERC Consolidator grant “LEGO”, we have demonstrated that fully synthetic structures with unprecedented combinations have immunological properties against cancers. We have developed a “molecular LEGO” approach to construct Antibody Recruiting Glycodendrimers (ARGs) embedded with key structural parameters and capable of redirecting endogenous antibodies present in the human bloodstream against tumors without preliminary immunization. Among a variety ARGs, we have identified two lead compound that: 1/ recruit natural Abs with a cluster of oligosaccharides; 2/ target cancer receptors with a cluster of peptides; 3/ promote the formation of a ternary complex between natural Abs and cancer cells; 4/ promote up to 60% of cytotoxicity towards cancer cells in vitro. Within THERA-LEGO, we aim to investigate the commercial feasibility and the in vivo properties of our lead compounds (toxicity, stability, biodistribution, pharmacokinetics/dynamics, immunogenicity) in humanized mice models, to facilitate the transfer of the technology to a company and the initiation of clinical development. The work to be done in this project will advance our assets from a Technology Readiness Level (TRL) of 3 to 5 and will enable us to create an exploitation strategy (relying either on commercialization through own spin-off or licensing to a pharma company).

Status

CLOSED

Call topic

ERC-2020-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-PoC