Summary
TAMING CORROSION proposes a radically new approach to the long-standing challenge of mitigating corrosion of infrastructures – such as bridges, pipelines, etc. The socio-economic burden of replacing and repairing infrastructures due to corrosion is staggering. In the EU alone, estimates are in the range of 250 billion € annually, with an expected steep increase over the coming decades. This urgently calls for new, cost-effective corrosion mitigation strategies to prolong the useful life of ageing civil infrastructures. Electrochemical corrosion protection (ECP) methods have a large potential to play a key role in addressing this challenge. However, to match these expectations, game-changing advances are needed in both science and engineering. Limited routine use and poor engineering practice of ECP can be traced to insufficient theoretical grounds and a lack of fundamental quantification of key processes. The aim of this proposal is to develop the scientific basis to deliver the first scientifically anchored engineering model and to unlock the potential of ECP as an innovative solution to the grand challenge of rapidly deteriorating infrastructures. The focus areas include: 1) for the first time integrating all relevant physical, chemical, and electrochemical processes into a quantitative model framework for the systematic study of fundamental processes and evaluation of solution strategies. An important novelty lies in combining reactive transport modeling in porous media with rigorous corrosion science. 2) Elucidating the poorly understood role of microbiology in corrosion; and 3) Devising new experiments that link corrosion science and electrochemistry with environmental science methods. Only by delivering ground-breaking scientific contributions will it be possible to abandon empiricism in the field and pave the way towards a new, scientifically sound generation of ECP technology to ensure safety, cost-efficiency, and sustainability of our infrastructures.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/848794 |
Start date: | 01-01-2020 |
End date: | 31-12-2024 |
Total budget - Public funding: | 1 497 815,00 Euro - 1 497 815,00 Euro |
Cordis data
Original description
TAMING CORROSION proposes a radically new approach to the long-standing challenge of mitigating corrosion of infrastructures – such as bridges, pipelines, etc. The socio-economic burden of replacing and repairing infrastructures due to corrosion is staggering. In the EU alone, estimates are in the range of 250 billion € annually, with an expected steep increase over the coming decades. This urgently calls for new, cost-effective corrosion mitigation strategies to prolong the useful life of ageing civil infrastructures. Electrochemical corrosion protection (ECP) methods have a large potential to play a key role in addressing this challenge. However, to match these expectations, game-changing advances are needed in both science and engineering. Limited routine use and poor engineering practice of ECP can be traced to insufficient theoretical grounds and a lack of fundamental quantification of key processes. The aim of this proposal is to develop the scientific basis to deliver the first scientifically anchored engineering model and to unlock the potential of ECP as an innovative solution to the grand challenge of rapidly deteriorating infrastructures. The focus areas include: 1) for the first time integrating all relevant physical, chemical, and electrochemical processes into a quantitative model framework for the systematic study of fundamental processes and evaluation of solution strategies. An important novelty lies in combining reactive transport modeling in porous media with rigorous corrosion science. 2) Elucidating the poorly understood role of microbiology in corrosion; and 3) Devising new experiments that link corrosion science and electrochemistry with environmental science methods. Only by delivering ground-breaking scientific contributions will it be possible to abandon empiricism in the field and pave the way towards a new, scientifically sound generation of ECP technology to ensure safety, cost-efficiency, and sustainability of our infrastructures.Status
SIGNEDCall topic
ERC-2019-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)