SONOBOTS | Acousto-Magnetic Micro/Nanorobots for Biomedical Applications

Summary
Micro/nanorobots can transform many aspects of medicine by enabling tasks, such as delivering drugs or genes precisely to targeted areas, transducing force on individual cells or tissues, performing biopsies, and facilitating non-invasive surgeries. Numerous propulsion mechanisms have been developed, but their low propulsion speed, lack of biocompatibility, and poor navigation capabilities have limited their use. The objective of this proposal is to develop wireless micro/nanorobots using acoustic and magnetic actuation modalities that will be used to navigate in microfluidics and zebrafish disease models to help better understand and treat diseases. The combination of ultrasound and magnetic fields is capable of overcoming the limitations encountered using a single actuation technique, and both are used extensively in clinical diagnostics and therapeutics. This proposal is divided into three research areas. 1) To date, no systematic studies have been conducted utilizing micro/nanorobotics on living animals. The research will address many of the fundamental challenges of using micro/nanorobots in living animals, followed by testing in microfluidics, 3D arbitrarily-shaped fluidic devices, and the vasculature of zebrafish embryos. Propulsion will be studied in the direction of and against blood flow, a 3D propulsion will be developed, and a swarm of nanorobots will be studied. 2) A platform will be developed that involves the trapping and manipulation of nanorobots in an animal model, such as zebrafish embryos. 3) We will develop an active drug delivery platform combined with other methods to study numerous disease models using the models based on live zebrafish embryos. We believe the results of the proposed research will have a significant impact in the field.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/853309
Start date: 01-11-2019
End date: 31-10-2025
Total budget - Public funding: 1 484 839,00 Euro - 1 484 839,00 Euro
Cordis data

Original description

Micro/nanorobots can transform many aspects of medicine by enabling tasks, such as delivering drugs or genes precisely to targeted areas, transducing force on individual cells or tissues, performing biopsies, and facilitating non-invasive surgeries. Numerous propulsion mechanisms have been developed, but their low propulsion speed, lack of biocompatibility, and poor navigation capabilities have limited their use. The objective of this proposal is to develop wireless micro/nanorobots using acoustic and magnetic actuation modalities that will be used to navigate in microfluidics and zebrafish disease models to help better understand and treat diseases. The combination of ultrasound and magnetic fields is capable of overcoming the limitations encountered using a single actuation technique, and both are used extensively in clinical diagnostics and therapeutics. This proposal is divided into three research areas. 1) To date, no systematic studies have been conducted utilizing micro/nanorobotics on living animals. The research will address many of the fundamental challenges of using micro/nanorobots in living animals, followed by testing in microfluidics, 3D arbitrarily-shaped fluidic devices, and the vasculature of zebrafish embryos. Propulsion will be studied in the direction of and against blood flow, a 3D propulsion will be developed, and a swarm of nanorobots will be studied. 2) A platform will be developed that involves the trapping and manipulation of nanorobots in an animal model, such as zebrafish embryos. 3) We will develop an active drug delivery platform combined with other methods to study numerous disease models using the models based on live zebrafish embryos. We believe the results of the proposed research will have a significant impact in the field.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG