ReNewHydrides | Renewable Hydride Donors and Their Utilization in Catalytic Reduction and Deoxygenation Reactions

Summary
The production of chemicals, plastics, solvents, etc., contributes to 20 % of the Gross Value Added in the EU, where sales have doubled over the last 20 years. Despite this dynamism, the chemical industry is energy intensive and 95 % of organic chemicals derive from fossil oil and natural gas. To sustain the growth of this industry, the replacement of fossil feedstocks with renewable carbon, phosphorus and silicon sources should be encouraged. Nonetheless, such a sourcing shift represents a paradigm shift: while the development of petrochemistry has relied on the selective oxidation of hydrocarbons, the conversion of renewable feedstocks (e.g. CO2, phosphates, silicates or biomass) requires efficient reduction methods and catalysts to overcome their oxidized nature.
Today, no reduction method meets the criteria for a versatile and energy efficient reduction of oxidized feedstocks and the aim of the ReNewHydrides project is to design novel reductants and catalytic reactions to achieve this important aim. At the crossroads of main group element chemistry, organometallic chemistry, electrochemistry and homogenous catalysis, I propose to develop innovative and recyclable reductants based on silicon and boron compounds, and to utilize them to tackle catalytic challenges in the reduction of C–O, P–O and Si–O bonds. The overarching principle is to build a balanced synthetic cycle, where the electrochemical reduction of functionalized and oxidized substrates is ensured by silicon and boron based hydride donors, with a high energy efficiency and selectivity.
This project will foster innovative routes in the utilization of renewable carbon, phosphorus and silicon feedstocks. It is therefore of high risk, but ultimately extremely rewarding. The results will also also open-up new horizons in silicon and boron chemistry and they will finally serve the scientific community involved in the fields of organic and inorganic chemistry, sustainable chemistry and energy storage.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/818260
Start date: 01-10-2019
End date: 30-09-2025
Total budget - Public funding: 1 999 837,50 Euro - 1 999 837,00 Euro
Cordis data

Original description

The production of chemicals, plastics, solvents, etc., contributes to 20 % of the Gross Value Added in the EU, where sales have doubled over the last 20 years. Despite this dynamism, the chemical industry is energy intensive and 95 % of organic chemicals derive from fossil oil and natural gas. To sustain the growth of this industry, the replacement of fossil feedstocks with renewable carbon, phosphorus and silicon sources should be encouraged. Nonetheless, such a sourcing shift represents a paradigm shift: while the development of petrochemistry has relied on the selective oxidation of hydrocarbons, the conversion of renewable feedstocks (e.g. CO2, phosphates, silicates or biomass) requires efficient reduction methods and catalysts to overcome their oxidized nature.
Today, no reduction method meets the criteria for a versatile and energy efficient reduction of oxidized feedstocks and the aim of the ReNewHydrides project is to design novel reductants and catalytic reactions to achieve this important aim. At the crossroads of main group element chemistry, organometallic chemistry, electrochemistry and homogenous catalysis, I propose to develop innovative and recyclable reductants based on silicon and boron compounds, and to utilize them to tackle catalytic challenges in the reduction of C–O, P–O and Si–O bonds. The overarching principle is to build a balanced synthetic cycle, where the electrochemical reduction of functionalized and oxidized substrates is ensured by silicon and boron based hydride donors, with a high energy efficiency and selectivity.
This project will foster innovative routes in the utilization of renewable carbon, phosphorus and silicon feedstocks. It is therefore of high risk, but ultimately extremely rewarding. The results will also also open-up new horizons in silicon and boron chemistry and they will finally serve the scientific community involved in the fields of organic and inorganic chemistry, sustainable chemistry and energy storage.

Status

SIGNED

Call topic

ERC-2018-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-COG