FEAR | Fault Activation and Earthquake Rupture

Summary
Earthquakes are one the most significant hazards for human society, and at the same time, they remain the most elusive. Advancing our ability to understand their occurrence and intensity is of paramount importance for efforts to make society more resilient to the risk posed by catastrophic earthquakes. Progress in further understanding of earthquake physics is hindered by the lack of appropriate experimental facilities for observing the earthquake process at close distance and further advances will depend on the possibility to perform controlled experiments of fault stimulation and earthquake initiation at relevant depths and pressures. A new deep underground experimental facility is being constructed in the Bedretto tunnel in the Swiss Alps, offering a unique opportunity to perform fault stimulation and earthquake nucleation experiments on a scale and depth not available until now. FEAR will conduct the first-ever program to: (i) perform controlled 50-100 m scale fault stimulation experiments in basement rock at over 1'000m depth, (ii) pre-condition the stress distribution on the fault to perform real-time tests of different physical source and forecasting hypotheses, (iii) deploy data-driven approaches and real-time modelling to conduct structured prospective forecasting experiments, (iv) integrate and validate results from deep-underground experiments, experimental rock-deformation laboratories, numerical physics and dynamic modeling, and observations from natural earthquakes. The ERC Synergy framework enables to bring together the key complementary competences in Europe and to integrate them into a coherent program.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/856559
Start date: 01-09-2020
End date: 31-08-2026
Total budget - Public funding: 13 797 250,00 Euro - 13 797 250,00 Euro
Cordis data

Original description

Earthquakes are one the most significant hazards for human society, and at the same time, they remain the most elusive. Advancing our ability to understand their occurrence and intensity is of paramount importance for efforts to make society more resilient to the risk posed by catastrophic earthquakes. Progress in further understanding of earthquake physics is hindered by the lack of appropriate experimental facilities for observing the earthquake process at close distance and further advances will depend on the possibility to perform controlled experiments of fault stimulation and earthquake initiation at relevant depths and pressures. A new deep underground experimental facility is being constructed in the Bedretto tunnel in the Swiss Alps, offering a unique opportunity to perform fault stimulation and earthquake nucleation experiments on a scale and depth not available until now. FEAR will conduct the first-ever program to: (i) perform controlled 50-100 m scale fault stimulation experiments in basement rock at over 1'000m depth, (ii) pre-condition the stress distribution on the fault to perform real-time tests of different physical source and forecasting hypotheses, (iii) deploy data-driven approaches and real-time modelling to conduct structured prospective forecasting experiments, (iv) integrate and validate results from deep-underground experiments, experimental rock-deformation laboratories, numerical physics and dynamic modeling, and observations from natural earthquakes. The ERC Synergy framework enables to bring together the key complementary competences in Europe and to integrate them into a coherent program.

Status

SIGNED

Call topic

ERC-2019-SyG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-SyG