Q-Feedback | Quantum Feedback Engineering

Summary
Quantum technologies, such as quantum computers and simulators, have the potential of revolutionizing our computational speed, communication security and measurement precision. The power of the quantum relies on two key but fragile resources: quantum coherence and entanglement. This promising field is facing a major open question: how to design machines which exploit quantum properties on a large scale, and efficiently protect them from external perturbations (decoherence), which tend to suppress the quantum advantage?

Making a system robust and stable to the influence of external perturbations is one of the core problems in control engineering. The goal of this project is to address the above question from the angle of control systems. The fundamental and scientific ambition is to elaborate theoretical control methods to analyse and design feedback schemes for protecting and stabilizing quantum information. Q-Feedback develops mathematical methods to harness the inherently stochastic aspects of quantum measurements. Relying on the development of original mathematical perturbation techniques specific to open quantum systems, Q-Feedback proposes a new hierarchical strategy for quantum feedback modeling, design and analysis.

The building block of a quantum machine is the quantum bit (qubit), a system which can adopt two quantum states. Despite major progress, qubits remain fragile and lose their quantum properties before a meaningful task can be accomplished. For this reason, a qubit must be both protected against external perturbations, and manipulated to perform a task. Today, no such qubit has been built. In collaboration with experimentalists, the practical ambition is to design, relying on the control tools developed here, qubits readily integrable in a quantum processing unit. The physical platform will be Josephson superconducting circuits. Q-Feedback is expected to demonstrate the crucial role of control engineering in emerging quantum technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/884762
Start date: 01-12-2020
End date: 30-09-2026
Total budget - Public funding: 2 440 125,00 Euro - 2 440 125,00 Euro
Cordis data

Original description

Quantum technologies, such as quantum computers and simulators, have the potential of revolutionizing our computational speed, communication security and measurement precision. The power of the quantum relies on two key but fragile resources: quantum coherence and entanglement. This promising field is facing a major open question: how to design machines which exploit quantum properties on a large scale, and efficiently protect them from external perturbations (decoherence), which tend to suppress the quantum advantage?

Making a system robust and stable to the influence of external perturbations is one of the core problems in control engineering. The goal of this project is to address the above question from the angle of control systems. The fundamental and scientific ambition is to elaborate theoretical control methods to analyse and design feedback schemes for protecting and stabilizing quantum information. Q-Feedback develops mathematical methods to harness the inherently stochastic aspects of quantum measurements. Relying on the development of original mathematical perturbation techniques specific to open quantum systems, Q-Feedback proposes a new hierarchical strategy for quantum feedback modeling, design and analysis.

The building block of a quantum machine is the quantum bit (qubit), a system which can adopt two quantum states. Despite major progress, qubits remain fragile and lose their quantum properties before a meaningful task can be accomplished. For this reason, a qubit must be both protected against external perturbations, and manipulated to perform a task. Today, no such qubit has been built. In collaboration with experimentalists, the practical ambition is to design, relying on the control tools developed here, qubits readily integrable in a quantum processing unit. The physical platform will be Josephson superconducting circuits. Q-Feedback is expected to demonstrate the crucial role of control engineering in emerging quantum technologies.

Status

SIGNED

Call topic

ERC-2019-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2019-ADG