MEDUSA | Multiscale Fluid and Plasma Dynamics using Particles

Summary
In the last decades, non-equilibrium effects in fluid and plasma dynamics have become the major topic for the understanding of the physics behind many applications and important industrial fields.
These applications include mirco- and nano-technologies along with plasma-based coating processes of nano device fabrication itself, where small dimensions lead to non-eq. effects.
But the applications range right up to other key areas, e.g. re-entry flows and flows around satellites, where rarefied gas and high velocities cause non-equilibrium. Furthermore, continuing miniaturization and increase of process energies will lead to non-eq. effects within technologies in the near future e.g. micro- and nano-fabrication, next-generation lithography or various space systems such as electric propulsion or actively electrodynamically shielded re-entry.
At the moment, non-eq. is still a perturbing phenomenon, because experimental measurements are complicated and simulation tools are only available for specialised problems due to the complexity.
The objective is to progress toward particle-based multiscale methods for thermo-chemical non-eq. gas and plasma flows allowing for the first time simulations of the whole range of high-tech applications and maintaining the competitiveness of European future industry.
As the availability of computational resources increases with decreasing prices, particle methods have become a novel attractive, accurate and elegant numerical tool.
This project will connect competences in physics, mathematics, chemistry and computational science and extend the open-source code platform PICLas, resulting in a direct benefit for the simulation community. Finally, as a main contributor in the field of particle-based fluid dynamics and the main developer of PICLas, I am confident to establish these novel methods as the state-of-the-art in research and academia as well as to enable their utilization in industrial applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/899981
Start date: 01-01-2021
End date: 31-12-2025
Total budget - Public funding: 1 446 125,00 Euro - 1 446 125,00 Euro
Cordis data

Original description

In the last decades, non-equilibrium effects in fluid and plasma dynamics have become the major topic for the understanding of the physics behind many applications and important industrial fields.
These applications include mirco- and nano-technologies along with plasma-based coating processes of nano device fabrication itself, where small dimensions lead to non-eq. effects.
But the applications range right up to other key areas, e.g. re-entry flows and flows around satellites, where rarefied gas and high velocities cause non-equilibrium. Furthermore, continuing miniaturization and increase of process energies will lead to non-eq. effects within technologies in the near future e.g. micro- and nano-fabrication, next-generation lithography or various space systems such as electric propulsion or actively electrodynamically shielded re-entry.
At the moment, non-eq. is still a perturbing phenomenon, because experimental measurements are complicated and simulation tools are only available for specialised problems due to the complexity.
The objective is to progress toward particle-based multiscale methods for thermo-chemical non-eq. gas and plasma flows allowing for the first time simulations of the whole range of high-tech applications and maintaining the competitiveness of European future industry.
As the availability of computational resources increases with decreasing prices, particle methods have become a novel attractive, accurate and elegant numerical tool.
This project will connect competences in physics, mathematics, chemistry and computational science and extend the open-source code platform PICLas, resulting in a direct benefit for the simulation community. Finally, as a main contributor in the field of particle-based fluid dynamics and the main developer of PICLas, I am confident to establish these novel methods as the state-of-the-art in research and academia as well as to enable their utilization in industrial applications.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-STG