MICHELANGELO | MultiphasIc NanoreaCtors for HEterogeneous CataLysis via SmArt ENGinEering of TaiLored DispersiOns

Summary
Gas-liquid-solid (G/L/S) multiphasic reactors are extensively used in the chemical industry for catalytic processes. However, conventional reactors, such as packed beds and slurry reactors, typically suffer from resilient mass/heat transfer limitations due to their low specific interface areas, long mixing times, and a reduced accessibility of the gas reactants to the catalyst surface. To overcome these limitations, continuous flow microreactors and catalytic membrane reactors have been considered for increasing the G/L interface area, but these systems require complex equipment and still do not guarantee an efficient L/S contact at the catalyst surface. For a major improvement on current systems in terms of cost efficiency and energy savings, G/L/S reactors operating at the nanoscale are required.
The aim of this ERC project is to design robust particle-stabilized G/L dispersions (i.e. micro/nano-bubbles and liquid marbles) as highly efficient G/L/S nanoreactors for conducting catalytic reactions at mild conditions.

We will (i) prepare NPs with defined sizes, shapes, hydrophilic-lipophilic balance (HLB), including catalytic functions; (ii) generate particle-stabilized bubbles and liquid marbles affording highly active and selective reactions at the G/L/S interface with NP recycling after each catalytic cycle using external stimuli; examine the interplay between the NP assembly at the G/L interface and the catalytic properties along the reaction by combining well-designed experiments with simulations; and (iv) reengineer G/L/S multiphasic reactors using our particle-stabilized nanoreactors to achieve a high catalytic performance at milder operation conditions compared to conventional reactors while keeping a high degree of stability and flexibility at reduced layouts.

Through innovation on both amphiphilic catalysts and process intensification, MICHELANGELO will deliver a radical step change towards a higher efficiency and competitiveness in the process industry.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/771586
Start date: 01-10-2018
End date: 30-09-2025
Total budget - Public funding: 1 956 720,00 Euro - 1 956 720,00 Euro
Cordis data

Original description

Gas-liquid-solid (G/L/S) multiphasic reactors are extensively used in the chemical industry for catalytic processes. However, conventional reactors, such as packed beds and slurry reactors, typically suffer from resilient mass/heat transfer limitations due to their low specific interface areas, long mixing times, and a reduced accessibility of the gas reactants to the catalyst surface. To overcome these limitations, continuous flow microreactors and catalytic membrane reactors have been considered for increasing the G/L interface area, but these systems require complex equipment and still do not guarantee an efficient L/S contact at the catalyst surface. For a major improvement on current systems in terms of cost efficiency and energy savings, G/L/S reactors operating at the nanoscale are required.
The aim of this ERC project is to design robust particle-stabilized G/L dispersions (i.e. micro/nano-bubbles and liquid marbles) as highly efficient G/L/S nanoreactors for conducting catalytic reactions at mild conditions.

We will (i) prepare NPs with defined sizes, shapes, hydrophilic-lipophilic balance (HLB), including catalytic functions; (ii) generate particle-stabilized bubbles and liquid marbles affording highly active and selective reactions at the G/L/S interface with NP recycling after each catalytic cycle using external stimuli; examine the interplay between the NP assembly at the G/L interface and the catalytic properties along the reaction by combining well-designed experiments with simulations; and (iv) reengineer G/L/S multiphasic reactors using our particle-stabilized nanoreactors to achieve a high catalytic performance at milder operation conditions compared to conventional reactors while keeping a high degree of stability and flexibility at reduced layouts.

Through innovation on both amphiphilic catalysts and process intensification, MICHELANGELO will deliver a radical step change towards a higher efficiency and competitiveness in the process industry.

Status

SIGNED

Call topic

ERC-2017-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2017
ERC-2017-COG