Atto-Zepto | Ultrasensitive Nano-Optomechanical Sensors

Summary
By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/820033
Start date: 01-09-2019
End date: 31-08-2024
Total budget - Public funding: 2 067 905,00 Euro - 2 067 905,00 Euro
Cordis data

Original description

By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.

Status

SIGNED

Call topic

ERC-2018-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-COG