Summary
Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/716641 |
Start date: | 01-07-2017 |
End date: | 31-12-2023 |
Total budget - Public funding: | 1 528 442,00 Euro - 1 528 442,00 Euro |
Cordis data
Original description
Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Status
SIGNEDCall topic
ERC-2016-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)