SENSiSOFT | New sensor devices based on soft chemistry assisted nanostructured functional oxides on Si integrated systems

Summary
Piezoelectrics are the active elements of many everyday applications, from ink-jet printers to ultrasound generators, representing a billion euro industry. They are the key elements of motion sensors and resonators present in any wireless network sensor (WNS) node. However, an increased production of piezoelectrics in a sustainable way is to-date a milestone. SENSiSOFT proposes to come up with materials that can provide a solution to this problem: piezoelectric materials that are abundant, cheap and harmless. The aim of this project is to produce new piezoelectric devices of nanometer size with an unusual limit for wireless mechanical sensors, using direct and combined chemical integration of quartz, perovskite and hollandites materials as nanostructured epitaxial thin films on silicon. This is a major challenge that demands bridging the gap between soft-chemistry and microfabrication techniques. Three strategies are proposed for this goal:
i) Implement a soft chemistry unified, monolithic process that will allow integrating epitaxial quartz, hollandite and perovskite oxide thin layers on silicon substrate with high piezoelectric response.
ii) Nanostructuration of piezoelectric epitaxial oxide thin films into controllable morphologies or nanostructures, in particular porous structure and 1D nanowires or nanorods, allowing excellent properties of oxides to be exploited to the fullest, mainly by avoiding clamping and improving its sensitivity.
iii) Fabrication of nanostructured SAW resonator-based and a LAMB-WAVE multisensor for monitoring mechanical parameters (mass, forces, pressure…). We will use MEMs technology in order to be able to define resonating structures (plates, membranes, bridges…) by silicon micromachining.
So, SENSiSOFT presents three innovative strategies to develop sensor devices capable to answer the metrology demand, with a detection threshold 10 to 100 times more sensitive resulting from a 1D and 2D configuration of novel piezoelectric oxides.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/803004
Start date: 01-01-2019
End date: 31-12-2024
Total budget - Public funding: 1 499 360,00 Euro - 1 499 360,00 Euro
Cordis data

Original description

Piezoelectrics are the active elements of many everyday applications, from ink-jet printers to ultrasound generators, representing a billion euro industry. They are the key elements of motion sensors and resonators present in any wireless network sensor (WNS) node. However, an increased production of piezoelectrics in a sustainable way is to-date a milestone. SENSiSOFT proposes to come up with materials that can provide a solution to this problem: piezoelectric materials that are abundant, cheap and harmless. The aim of this project is to produce new piezoelectric devices of nanometer size with an unusual limit for wireless mechanical sensors, using direct and combined chemical integration of quartz, perovskite and hollandites materials as nanostructured epitaxial thin films on silicon. This is a major challenge that demands bridging the gap between soft-chemistry and microfabrication techniques. Three strategies are proposed for this goal:
i) Implement a soft chemistry unified, monolithic process that will allow integrating epitaxial quartz, hollandite and perovskite oxide thin layers on silicon substrate with high piezoelectric response.
ii) Nanostructuration of piezoelectric epitaxial oxide thin films into controllable morphologies or nanostructures, in particular porous structure and 1D nanowires or nanorods, allowing excellent properties of oxides to be exploited to the fullest, mainly by avoiding clamping and improving its sensitivity.
iii) Fabrication of nanostructured SAW resonator-based and a LAMB-WAVE multisensor for monitoring mechanical parameters (mass, forces, pressure…). We will use MEMs technology in order to be able to define resonating structures (plates, membranes, bridges…) by silicon micromachining.
So, SENSiSOFT presents three innovative strategies to develop sensor devices capable to answer the metrology demand, with a detection threshold 10 to 100 times more sensitive resulting from a 1D and 2D configuration of novel piezoelectric oxides.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG